Suppr超能文献

探索用于高光谱图像超分辨率的光谱先验

Exploring the Spectral Prior for Hyperspectral Image Super-Resolution.

作者信息

Hu Qian, Wang Xinya, Jiang Junjun, Zhang Xiao-Ping, Ma Jiayi

出版信息

IEEE Trans Image Process. 2024;33:5260-5272. doi: 10.1109/TIP.2024.3460470. Epub 2024 Sep 27.

Abstract

In recent years, many single hyperspectral image super-resolution methods have emerged to enhance the spatial resolution of hyperspectral images without hardware modification. However, existing methods typically face two significant challenges. First, they struggle to handle the high-dimensional nature of hyperspectral data, which often results in high computational complexity and inefficient information utilization. Second, they have not fully leveraged the abundant spectral information in hyperspectral images. To address these challenges, we propose a novel hyperspectral super-resolution network named SNLSR, which transfers the super-resolution problem into the abundance domain. Our SNLSR leverages a spatial preserve decomposition network to estimate the abundance representations of the input hyperspectral image. Notably, the network acknowledges and utilizes the commonly overlooked spatial correlations of hyperspectral images, leading to better reconstruction performance. Then, the estimated low-resolution abundance is super-resolved through a spatial spectral attention network, where the informative features from both spatial and spectral domains are fully exploited. Considering that the hyperspectral image is highly spectrally correlated, we customize a spectral-wise non-local attention module to mine similar pixels along spectral dimension for high-frequency detail recovery. Extensive experiments demonstrate the superiority of our method over other state-of-the-art methods both visually and metrically. Our code is publicly available at https://github.com/HuQ1an/SNLSR.

摘要

近年来,许多单幅高光谱图像超分辨率方法相继出现,旨在在不进行硬件修改的情况下提高高光谱图像的空间分辨率。然而,现有方法通常面临两个重大挑战。首先,它们难以处理高光谱数据的高维特性,这往往导致高计算复杂度和低效的信息利用。其次,它们尚未充分利用高光谱图像中丰富的光谱信息。为了应对这些挑战,我们提出了一种名为SNLSR的新型高光谱超分辨率网络,该网络将超分辨率问题转换到丰度域。我们的SNLSR利用一个空间保留分解网络来估计输入高光谱图像的丰度表示。值得注意的是,该网络认识并利用了高光谱图像中通常被忽视的空间相关性,从而带来更好的重建性能。然后,通过一个空间光谱注意力网络对估计出的低分辨率丰度进行超分辨率处理,其中充分利用了来自空间和光谱域的信息特征。考虑到高光谱图像在光谱上具有高度相关性,我们定制了一个光谱维度非局部注意力模块,以在光谱维度上挖掘相似像素,用于高频细节恢复。大量实验在视觉和指标上都证明了我们的方法优于其他现有先进方法。我们的代码可在https://github.com/HuQ1an/SNLSR上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验