School of Life Sciences, University of Warwick, United Kingdom.
Department of Clinical Science, University of Bergen, Norway.
PLoS Biol. 2021 Apr 23;19(4):e3001153. doi: 10.1371/journal.pbio.3001153. eCollection 2021 Apr.
Mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) encode vital bioenergetic apparatus, and mutations in these organelle DNA (oDNA) molecules can be devastating. In the germline of several animals, a genetic "bottleneck" increases cell-to-cell variance in mtDNA heteroplasmy, allowing purifying selection to act to maintain low proportions of mutant mtDNA. However, most eukaryotes do not sequester a germline early in development, and even the animal bottleneck remains poorly understood. How then do eukaryotic organelles avoid Muller's ratchet-the gradual buildup of deleterious oDNA mutations? Here, we construct a comprehensive and predictive genetic model, quantitatively describing how different mechanisms segregate and decrease oDNA damage across eukaryotes. We apply this comprehensive theory to characterise the animal bottleneck with recent single-cell observations in diverse mouse models. Further, we show that gene conversion is a particularly powerful mechanism to increase beneficial cell-to-cell variance without depleting oDNA copy number, explaining the benefit of observed oDNA recombination in diverse organisms which do not sequester animal-like germlines (for example, sponges, corals, fungi, and plants). Genomic, transcriptomic, and structural datasets across eukaryotes support this mechanism for generating beneficial variance without a germline bottleneck. This framework explains puzzling oDNA differences across taxa, suggesting how Muller's ratchet is avoided in different eukaryotes.
线粒体 DNA(mtDNA)和质体 DNA(ptDNA)编码重要的生物能量装置,这些细胞器 DNA(oDNA)分子的突变可能是毁灭性的。在几种动物的生殖细胞中,遗传“瓶颈”增加了 mtDNA 异质性的细胞间变异性,允许纯化选择来维持低比例的突变 mtDNA。然而,大多数真核生物在早期发育过程中不会隔离生殖细胞,甚至动物瓶颈也知之甚少。那么,真核细胞器如何避免 Muller 的棘轮——有害 oDNA 突变的逐渐积累?在这里,我们构建了一个全面而可预测的遗传模型,定量描述了不同机制如何在真核生物中分离和减少 oDNA 损伤。我们将这一综合理论应用于描述动物瓶颈,利用最近在不同小鼠模型中的单细胞观察结果。此外,我们还表明,基因转换是一种特别强大的机制,可以在不耗尽 oDNA 拷贝数的情况下增加有益的细胞间变异性,解释了在不隔离类似动物生殖细胞的不同生物体中观察到的 oDNA 重组的益处(例如海绵、珊瑚、真菌和植物)。跨真核生物的基因组、转录组和结构数据集支持这种不通过生殖细胞瓶颈产生有益变异性的机制。该框架解释了跨分类群的 oDNA 差异,表明 Muller 的棘轮如何在不同的真核生物中避免。