AES Armitage Environmental Sciences, Inc., Ottawa, Ontario K1L 8C3, Canada; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
ARC Arnot Research and Consulting, Toronto, Ontario M4M 1W4, Canada.
Environ Int. 2021 Sep;154:106557. doi: 10.1016/j.envint.2021.106557. Epub 2021 Apr 23.
This study describes the development and intercomparison of generic physiologically-based toxicokinetic (PBTK) models for humans comprised of internally consistent one-compartment (1Co-) and multi-compartment (MCo-) implementations (G-PBTK). The G-PBTK models were parameterized for an adult male (70 kg) using common physiological parameters and in vitro biotransformation rate estimates and subsequently evaluated using independent concentration versus time data (n = 6) and total elimination half-lives (n = 15) for diverse organic chemicals. The model performance is acceptable considering the inherent uncertainty in the biotransformation rate data and the absence of model calibration. The G-PBTK model was then applied using hypothetical neutral organics, acidic ionizable organics and basic ionizable organics (IOCs) to identify combinations of partitioning properties and biotransformation rates leading to substantial discrepancies between 1Co- and MCo-PBTK calculations for whole body concentrations and half-lives. The 1Co- and MCo-PBTK model calculations for key toxicokinetic parameters are broadly consistent unless biotransformation is rapid (e.g., half-life less than five days). When half-lives are relatively short, discrepancies are greatest for the neutral organics and least for the acidic IOCs which follows from the estimated volumes of distribution (e.g., VD = 9.6-15.4 L/kg vs 0.3-1.6 L/kg for the neutral and acidic compounds respectively) and the related approach to internal chemical equilibrium. The model intercomparisons demonstrate that 1Co-PBTK models can be applied with confidence to many exposure scenarios, particularly those focused on chronic or repeat exposures and for prioritization and screening-level decision contexts. However, MCo-PBTK models may be necessary in certain contexts, particularly for intermittent, short-term and highly variable exposures. A key recommendation to guide model selection and the development of tiered PBTK modeling frameworks that emerges from this study is the need to harmonize models with respect to parameterization and process descriptions to the greatest extent possible when proceeding from the application of simpler to more complex modeling tools as part of chemical assessment activities.
本研究描述了通用生理毒代动力学(PBTK)模型的开发和相互比较,这些模型由内部一致的单室(1Co-)和多室(MCo-)实现组成(G-PBTK)。使用常见的生理参数和体外生物转化速率估算值,为一个成年男性(70 公斤)参数化了 G-PBTK 模型,随后使用独立的浓度与时间数据(n=6)和各种有机化学物质的总消除半衰期(n=15)对模型进行了评估。考虑到生物转化速率数据的固有不确定性和模型校准的缺乏,该模型的性能是可以接受的。然后,使用假设的中性有机化合物、酸性可电离有机化合物和碱性可电离有机化合物(IOCs)应用 G-PBTK 模型,以确定导致全身浓度和半衰期在 1Co-和 MCo-PBTK 计算之间存在显著差异的分配性质和生物转化速率的组合。除非生物转化非常迅速(例如半衰期小于五天),否则 1Co-和 MCo-PBTK 模型对关键毒代动力学参数的计算大致一致。当半衰期相对较短时,中性有机化合物的差异最大,酸性 IOCs 的差异最小,这是从估计的分布体积(例如,VD=9.6-15.4 L/kg 与中性和酸性化合物分别为 0.3-1.6 L/kg)和相关的内部化学平衡方法得出的。模型比较表明,1Co-PBTK 模型可以在许多暴露情况下得到信任,特别是那些专注于慢性或重复暴露以及优先级和筛选水平决策背景的情况。然而,在某些情况下可能需要 MCo-PBTK 模型,特别是对于间歇性、短期和高度变化的暴露。从这项研究中得出的指导模型选择和分层 PBTK 建模框架开发的一个关键建议是,在进行化学评估活动时,需要尽可能协调模型的参数化和过程描述,以便从更简单的建模工具向更复杂的建模工具应用。