Suppr超能文献

用于从到外推的高通量 PBTK 模型。

High-throughput PBTK models for to extrapolation.

机构信息

Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.

Oak Ridge Institute for Science and Education (ORISE) fellow at the Center for Computational Toxicology and Exposure, Office of Research and Development, Research Triangle Park, NC, USA.

出版信息

Expert Opin Drug Metab Toxicol. 2021 Aug;17(8):903-921. doi: 10.1080/17425255.2021.1935867. Epub 2021 Jun 15.

Abstract

INTRODUCTION

Toxicity data are unavailable for many thousands of chemicals in commerce and the environment. Therefore, risk assessors need to rapidly screen these chemicals for potential risk to public health. High-throughput screening (HTS) for bioactivity, when used with high-throughput toxicokinetic (HTTK) data and models, allows characterization of these thousands of chemicals.

AREAS COVERED

This review covers generic physiologically based toxicokinetic (PBTK) models and high-throughput PBTK modeling for extrapolation (IVIVE) of HTS data. We focus on 'httk', a public, open-source set of computational modeling tools and toxicokinetic (TK) data.

EXPERT OPINION

HTTK benefits chemical risk assessors with its ability to support rapid chemical screening/prioritization, perform IVIVE, and provide provisional TK modeling for large numbers of chemicals using only limited chemical-specific data. Although generic TK model design can increase prediction uncertainty, these models provide offsetting benefits by increasing model implementation accuracy. Also, public distribution of the models and data enhances reproducibility. For the httk package, the modular and open-source design can enable the tool to be used and continuously improved by a broad user community in support of the critical need for high-throughput chemical prioritization and rapid dose estimation to facilitate rapid hazard assessments.

摘要

简介

商业和环境中存在成千上万种化学物质,其毒性数据尚不可用。因此,风险评估人员需要快速筛选这些化学品,以评估它们对公众健康的潜在风险。当与高通量毒代动力学(HTTK)数据和模型结合使用时,高通量生物活性筛选(HTS)可用于这些数千种化学物质的特征描述。

涵盖领域

本文综述了通用基于生理学的毒代动力学(PBTK)模型和高通量 PBTK 外推(IVIVE)的高通量建模。我们重点介绍了“httk”,这是一组公共的、开源的计算建模工具和毒代动力学(TK)数据。

专家意见

HTTK 凭借其支持快速化学筛选/优先级划分、进行 IVIVE 以及仅使用有限的化学特异性数据为大量化学物质提供临时 TK 建模的能力,使化学风险评估人员受益。尽管通用 TK 模型设计会增加预测不确定性,但这些模型通过提高模型实施准确性提供了补偿性好处。此外,模型和数据的公开分发增强了可重复性。对于 httk 包,模块化和开源设计可以使该工具能够被广泛的用户社区使用和不断改进,以支持高通量化学优先排序和快速剂量估算的迫切需求,从而促进快速危害评估。

相似文献

1
High-throughput PBTK models for to extrapolation.
Expert Opin Drug Metab Toxicol. 2021 Aug;17(8):903-921. doi: 10.1080/17425255.2021.1935867. Epub 2021 Jun 15.
2
Enabling transparent toxicokinetic modeling for public health risk assessment.
PLoS One. 2025 Apr 16;20(4):e0321321. doi: 10.1371/journal.pone.0321321. eCollection 2025.
3
Toxicokinetic Triage for Environmental Chemicals.
Toxicol Sci. 2015 Sep;147(1):55-67. doi: 10.1093/toxsci/kfv118. Epub 2015 Jun 16.
4
Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics.
Toxicol Sci. 2018 May 1;163(1):152-169. doi: 10.1093/toxsci/kfy020.
5
Evaluation of a rapid, generic human gestational dose model.
Reprod Toxicol. 2022 Oct;113:172-188. doi: 10.1016/j.reprotox.2022.09.004. Epub 2022 Sep 16.
6
Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization.
Toxicol Sci. 2019 Dec 1;172(2):235-251. doi: 10.1093/toxsci/kfz205.
7
Evaluation and calibration of high-throughput predictions of chemical distribution to tissues.
J Pharmacokinet Pharmacodyn. 2017 Dec;44(6):549-565. doi: 10.1007/s10928-017-9548-7. Epub 2017 Oct 14.
9
Simulating toxicokinetic variability to identify susceptible and highly exposed populations.
J Expo Sci Environ Epidemiol. 2022 Nov;32(6):855-863. doi: 10.1038/s41370-022-00491-0. Epub 2022 Nov 3.
10
httk: R Package for High-Throughput Toxicokinetics.
J Stat Softw. 2017 Jul 17;79(4):1-26. doi: 10.18637/jss.v079.i04.

引用本文的文献

1
Enabling transparent toxicokinetic modeling for public health risk assessment.
PLoS One. 2025 Apr 16;20(4):e0321321. doi: 10.1371/journal.pone.0321321. eCollection 2025.
2
Advancing Toxicity Predictions: A Review on to Extrapolation in Next-Generation Risk Assessment.
Environ Health (Wash). 2024 May 9;2(7):499-513. doi: 10.1021/envhealth.4c00043. eCollection 2024 Jul 19.
3
Computational Modelling of the Impact of Evaporation on In-Vitro Dermal Absorption.
Pharm Res. 2024 Oct;41(10):1979-1990. doi: 10.1007/s11095-024-03779-y. Epub 2024 Oct 7.
5
A database of chemical absorption in human skin with mechanistic modeling applications.
Sci Data. 2024 Jul 10;11(1):755. doi: 10.1038/s41597-024-03588-3.
7
8
Characterizing Chemical Exposure Trends from NHANES Urinary Biomonitoring Data.
Environ Health Perspect. 2024 Jan;132(1):17009. doi: 10.1289/EHP12188. Epub 2024 Jan 29.
10
Reproducibility of organ-level effects in repeat dose animal studies.
Comput Toxicol. 2023 Nov;28:1-17. doi: 10.1016/j.comtox.2023.100287.

本文引用的文献

4
An integrated chemical environment with tools for chemical safety testing.
Toxicol In Vitro. 2020 Sep;67:104916. doi: 10.1016/j.tiv.2020.104916. Epub 2020 Jun 14.
5
Development and evaluation of a high throughput inhalation model for organic chemicals.
J Expo Sci Environ Epidemiol. 2020 Sep;30(5):866-877. doi: 10.1038/s41370-020-0238-y. Epub 2020 Jun 16.
6
PBPK model reporting template for chemical risk assessment applications.
Regul Toxicol Pharmacol. 2020 Aug;115:104691. doi: 10.1016/j.yrtph.2020.104691. Epub 2020 Jun 2.
7
Physiologically Based Pharmacokinetic Models Predicting Renal and Hepatic Concentrations of Industrial Chemicals after Virtual Oral Doses in Rats.
Chem Res Toxicol. 2020 Jul 20;33(7):1736-1751. doi: 10.1021/acs.chemrestox.0c00009. Epub 2020 Jun 19.
8
Database of pharmacokinetic time-series data and parameters for 144 environmental chemicals.
Sci Data. 2020 Apr 20;7(1):122. doi: 10.1038/s41597-020-0455-1.
9
New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing.
Int J Environ Res Public Health. 2020 Mar 23;17(6):2124. doi: 10.3390/ijerph17062124.
10
Experimental Validation of Mass Balance Models for in Vitro Cell-Based Bioassays.
Environ Sci Technol. 2020 Jan 21;54(2):1120-1127. doi: 10.1021/acs.est.9b06144. Epub 2020 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验