Medical Technology and Image Processing Laboratory, Faculty of Medicine, University of Monastir, Tunisia; ISITCom Hammam-Sousse, University of Sousse, Tunisia.
Medical Technology and Image Processing Laboratory, Faculty of Medicine, University of Monastir, Tunisia; LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France; ISITCom Hammam-Sousse, University of Sousse, Tunisia.
Comput Med Imaging Graph. 2021 Jun;90:101902. doi: 10.1016/j.compmedimag.2021.101902. Epub 2021 Mar 16.
The segmentation of the retinal vascular tree presents a major step for detecting ocular pathologies. The clinical context expects higher segmentation performance with a reduced processing time. For higher accurate segmentation, several automated methods have been based on Deep Learning (DL) networks. However, the used convolutional layers bring to a higher computational complexity and so for execution times. For such need, this work presents a new DL based method for retinal vessel tree segmentation. Our main contribution consists in suggesting a new U-form DL architecture using lightweight convolution blocks in order to preserve a higher segmentation performance while reducing the computational complexity. As a second main contribution, preprocessing and data augmentation steps are proposed with respect to the retinal image and blood vessel characteristics. The proposed method is tested on DRIVE and STARE databases, which can achieve a better trade-off between the retinal blood vessel detection rate and the detection time with average accuracy of 0.978 and 0.98 in 0.59 s and 0.48 s per fundus image on GPU NVIDIA GTX 980 platforms, respectively for DRIVE and STARE database fundus images.
视网膜血管树的分割是检测眼部病变的重要步骤。临床环境要求在缩短处理时间的同时提高分割性能。为了实现更精确的分割,已经有几种基于深度学习(DL)网络的自动化方法。然而,所使用的卷积层会带来更高的计算复杂性,因此执行时间也会更长。针对这种需求,本文提出了一种新的基于深度学习的视网膜血管树分割方法。我们的主要贡献在于提出了一种新的 U 形深度学习架构,使用轻量级卷积块来保持更高的分割性能,同时降低计算复杂性。作为第二个主要贡献,针对视网膜图像和血管特征提出了预处理和数据增强步骤。在 DRIVE 和 STARE 数据库上进行了测试,该方法在视网膜血管检测率和检测时间之间实现了更好的权衡,在 NVIDIA GTX 980 GPU 平台上,对 DRIVE 和 STARE 数据库眼底图像的平均准确率分别为 0.978 和 0.98,检测时间分别为 0.59 秒和 0.48 秒。