Suppr超能文献

一种基于曲波对比度调整和广义线性模型的改进型视网膜血管半监督分割方法。

An improved semi-supervised segmentation of the retinal vasculature using curvelet-based contrast adjustment and generalized linear model.

作者信息

Ghislain Feudjio, Beaudelaire Saha Tchinda, Daniel Tchiotsop

机构信息

Research Unit of Condensed Matter, Electronics and Signal Processing (UR-MACETS). Department of Physics, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon.

Research Unit of Automation and Applied Computer (UR-AIA), Electrical Engineering Department of IUT-FV, University of Dschang, P.O. Box: 134, Bandjoun, Cameroon.

出版信息

Heliyon. 2024 Sep 17;10(18):e38027. doi: 10.1016/j.heliyon.2024.e38027. eCollection 2024 Sep 30.

Abstract

Diagnosis of most ophthalmic conditions, such as diabetic retinopathy, generally relies on an effective analysis of retinal blood vessels. Techniques that depend solely on the visual observation of clinicians can be tedious and prone to numerous errors. In this article, we propose a semi-supervised automated approach for segmenting blood vessels in retinal color images. Our method effectively combines some classical filters with a Generalized Linear Model (GLM). We first apply the Curvelet Transform along with the Contrast-Limited Histogram Adaptive Equalization (CLAHE) technique to significantly enhance the contrast of vessels in the retinal image during the preprocessing phase. We then use Gabor transform to extract features from the enhanced image. For retinal vasculature identification, we use a GLM learning model with a simple link identity function. Binarization is then performed using an automatic optimal threshold based on the maximum Youden index. A morphological cleaning operation is applied to remove isolated or unwanted segments from the final segmented image. The proposed model is evaluated using statistical parameters on images from three publicly available databases. We achieve average accuracies of 0.9593, 0.9553 and 0.9643, with Receiver Operating Characteristic (ROC) analysis yielding Area Under Curve (AUC) values of 0.9722, 0.9682 and 0.9767 for the CHASE_DB1, STARE and DRIVE databases, respectively. Compared to some of the best results from similar approaches published recently, our results exceed their performance on several datasets.

摘要

大多数眼科疾病的诊断,如糖尿病视网膜病变,通常依赖于对视网膜血管的有效分析。单纯依靠临床医生视觉观察的技术可能很繁琐,且容易出现许多错误。在本文中,我们提出了一种半监督自动方法,用于分割视网膜彩色图像中的血管。我们的方法有效地将一些经典滤波器与广义线性模型(GLM)相结合。我们首先在预处理阶段应用曲波变换以及对比度受限直方图自适应均衡化(CLAHE)技术,以显著增强视网膜图像中血管的对比度。然后我们使用伽柏变换从增强后的图像中提取特征。对于视网膜血管识别,我们使用具有简单链接恒等函数的GLM学习模型。然后基于最大约登指数使用自动最优阈值进行二值化。应用形态学清理操作从最终分割图像中去除孤立或不需要的片段。我们使用来自三个公开可用数据库的图像上的统计参数对所提出的模型进行评估。对于CHASE_DB1、STARE和DRIVE数据库,我们分别实现了0.9593、0.9553和0.9643的平均准确率,接收器操作特征(ROC)分析得出的曲线下面积(AUC)值分别为0.9722、0.9682和0.9767。与最近发表的类似方法的一些最佳结果相比,我们的结果在几个数据集上超过了它们的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1222/11437861/66c963fa77f8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验