文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

口腔鳞状细胞癌的预后生物标志物和治疗靶点:基于跨数据库分析的研究。

Prognostic biomarkers and therapeutic targets in oral squamous cell carcinoma: a study based on cross-database analysis.

机构信息

State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No.127, Changle West Road, Xi'an, 710032, Shaanxi Province, China.

Department of Thyroid and Breast Surgery, The Affiliated Hospital of Northwest University & Xi'an No.3 Hospital, Northwest University, Xi'an, 710018, Shaanxi Province, China.

出版信息

Hereditas. 2021 Apr 23;158(1):15. doi: 10.1186/s41065-021-00181-1.


DOI:10.1186/s41065-021-00181-1
PMID:33892811
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8066950/
Abstract

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a malignant cancer, the survival rate of patients is disappointing. Therefore, it is necessary to identify the driven-genes and prognostic biomarkers in OSCC. METHODS: Four Gene Expression Omnibus (GEO) datasets were integratedly analyzed using bioinformatics approaches, including identification of differentially expressed genes (DEGs), GO and KEGG analysis, construction of protein-protein interaction (PPI) network, selection of hub genes, analysis of prognostic information and genetic alterations of hub genes. ONCOMINE, The Cancer Genome Atlas (TCGA) and Human Protein Atlas databases were used to evaluate the expression and prognostic value of hub genes. Tumor immunity was assessed to investigate the functions of hub genes. Finally, Cox regression model was performed to construct a multiple-gene prognostic signature. RESULTS: Totally 261 genes were found to be dysregulated. 10 genes were considered to be the hub genes. The Kaplan-Meier analysis showed that upregulated SPP1, FN1, CXCL8, BIRC5, PLAUR, and AURKA were related to poor outcomes in OSCC patients. FOXM1 and TPX2 were considered as the potential immunotherapeutic targets with future clinical significance. Moreover, we constructed a nine-gene signature (TEX101, DSG2, SCG5, ADA, BOC, SCARA5, FST, SOCS1, and STC2), which can be utilized to predict prognosis of OSCC patients effectively. CONCLUSION: These findings may provide new clues for exploring the molecular mechanisms and targeted therapy in OSCC. The hub genes and risk gene signature are helpful to the personalized treatment and prognostic judgement.

摘要

背景:口腔鳞状细胞癌(OSCC)是一种恶性癌症,患者的生存率令人失望。因此,有必要确定 OSCC 中的驱动基因和预后生物标志物。

方法:使用生物信息学方法综合分析了四个基因表达综合数据集(GEO),包括差异表达基因(DEG)的鉴定、GO 和 KEGG 分析、蛋白质-蛋白质相互作用(PPI)网络的构建、枢纽基因的选择、预后信息和枢纽基因遗传改变的分析。ONCOMINE、癌症基因组图谱(TCGA)和人类蛋白质图谱数据库用于评估枢纽基因的表达和预后价值。评估肿瘤免疫以研究枢纽基因的功能。最后,进行 Cox 回归模型构建多基因预后特征。

结果:共发现 261 个基因失调。10 个基因被认为是枢纽基因。Kaplan-Meier 分析表明,上调的 SPP1、FN1、CXCL8、BIRC5、PLAUR 和 AURKA 与 OSCC 患者的不良预后相关。FOXM1 和 TPX2 被认为是具有未来临床意义的潜在免疫治疗靶点。此外,我们构建了一个由 9 个基因组成的特征(TEX101、DSG2、SCG5、ADA、BOC、SCARA5、FST、SOCS1 和 STC2),可有效预测 OSCC 患者的预后。

结论:这些发现可能为探索 OSCC 的分子机制和靶向治疗提供新线索。枢纽基因和风险基因特征有助于个性化治疗和预后判断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/3eb3e2615244/41065_2021_181_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/2a9e8021f5a5/41065_2021_181_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/140adbf3a9e8/41065_2021_181_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/5f0dd93b24dd/41065_2021_181_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/403b6fab8347/41065_2021_181_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/be959ce23b1f/41065_2021_181_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/720d0f54f1ff/41065_2021_181_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/33b07219ef37/41065_2021_181_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/71fe8736ce60/41065_2021_181_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/a58b05acfaa8/41065_2021_181_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/3eb3e2615244/41065_2021_181_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/2a9e8021f5a5/41065_2021_181_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/140adbf3a9e8/41065_2021_181_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/5f0dd93b24dd/41065_2021_181_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/403b6fab8347/41065_2021_181_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/be959ce23b1f/41065_2021_181_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/720d0f54f1ff/41065_2021_181_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/33b07219ef37/41065_2021_181_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/71fe8736ce60/41065_2021_181_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/a58b05acfaa8/41065_2021_181_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/8066950/3eb3e2615244/41065_2021_181_Fig10_HTML.jpg

相似文献

[1]
Prognostic biomarkers and therapeutic targets in oral squamous cell carcinoma: a study based on cross-database analysis.

Hereditas. 2021-4-23

[2]
Identification of Key Biomarkers and Potential Molecular Mechanisms in Oral Squamous Cell Carcinoma by Bioinformatics Analysis.

J Comput Biol. 2020-1

[3]
Identification for Exploring Underlying Pathogenesis and Therapy Strategy of Oral Squamous Cell Carcinoma by Bioinformatics Analysis.

Med Sci Monit. 2019-12-3

[4]
Identification of a Gene Prognostic Signature for Oral Squamous Cell Carcinoma by RNA Sequencing and Bioinformatics.

Biomed Res Int. 2021

[5]
A Five-mRNA Expression Signature to Predict Survival in Oral Squamous Cell Carcinoma by Integrated Bioinformatic Analyses.

Genet Test Mol Biomarkers. 2021-8

[6]
CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma.

Oral Dis. 2024-3

[7]
Identification of latent biomarkers in connection with progression and prognosis in oral cancer by comprehensive bioinformatics analysis.

World J Surg Oncol. 2021-8-12

[8]
Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Associated with Occurrence and Prognosis of Oral Squamous Cell Carcinoma.

Med Sci Monit. 2019-9-28

[9]
Identification of Candidate Target Genes and Immune Cells in Oral Squamous Cell Carcinoma.

Comput Math Methods Med. 2021

[10]
Screening and identification of autophagy-related biomarkers for oral squamous cell carcinoma (OSCC) via integrated bioinformatics analysis.

J Cell Mol Med. 2021-5

引用本文的文献

[1]
Knockdown of HOXD13 in Oral Squamous Cell Carcinoma Inhibited its Proliferation, Migration, and Influenced Fatty Acid Metabolism.

J Cancer. 2025-1-1

[2]
Integrating omics data and machine learning techniques for precision detection of oral squamous cell carcinoma: evaluating single biomarkers.

Front Immunol. 2024-12-3

[3]
SKA1 promotes oncogenic properties in oral dysplasia and oral squamous cell carcinoma, and augments resistance to radiotherapy.

Mol Oncol. 2025-4

[4]
SP110 Could be Used as a Potential Predictive and Therapeutic Biomarker for Oral Cancer.

Mol Biotechnol. 2025-6

[5]
Artificial intelligence-based epigenomic, transcriptomic and histologic signatures of tobacco use in oral squamous cell carcinoma.

NPJ Precis Oncol. 2024-6-8

[6]
Strategic approaches in oral squamous cell carcinoma diagnostics using liquid biopsy.

Periodontol 2000. 2024-10

[7]
Downregulation of salivary miR-3928 as a potential biomarker in patients with oral squamous cell carcinoma and oral lichen planus.

Clin Exp Dent Res. 2024-4

[8]
Desmoglein-2 as a cancer modulator: friend or foe?

Front Oncol. 2023-12-22

[9]
Biological biomarkers of oral cancer.

Periodontol 2000. 2024-10

[10]
Using CADD tools to inhibit the overexpressed genes FAP, FN1, and MMP1 by repurposing ginsenoside C and Rg1 as a treatment for oral cancer.

Front Mol Biosci. 2023-10-23

本文引用的文献

[1]
The Impact of Tregs on the Anticancer Immunity and the Efficacy of Immune Checkpoint Inhibitor Therapies.

Front Immunol. 2021

[2]
FOXM1 drives HPV+ HNSCC sensitivity to WEE1 inhibition.

Proc Natl Acad Sci U S A. 2020-11-10

[3]
Knockdown of circ_0003340 induces cell apoptosis, inhibits invasion and proliferation through miR-564/TPX2 in esophageal cancer cells.

Exp Cell Res. 2020-9-15

[4]
A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma.

Cancer Cell Int. 2020-6-3

[5]
Identification of a mA RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma.

Cancer Cell Int. 2020-5-7

[6]
Identification of Crucial Genes Associated With Immune Cell Infiltration in Hepatocellular Carcinoma by Weighted Gene Co-expression Network Analysis.

Front Genet. 2020-4-24

[7]
Development and Validation of an Individualized Nomogram for Predicting Survival in Patients with Esophageal Carcinoma after Resection.

J Cancer. 2020-4-6

[8]
miR-485-3p suppresses colorectal cancer via targeting TPX2.

Bratisl Lek Listy. 2020

[9]
Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer.

Aging (Albany NY). 2019-12-7

[10]
Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis.

Oncol Rep. 2019-11-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索