Suppr超能文献

VEHiCEl:一种基于变分编码的 Hi-C 缺失增强算法,用于改善和生成 Hi-C 数据。

VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data.

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA.

出版信息

Sci Rep. 2021 Apr 23;11(1):8880. doi: 10.1038/s41598-021-88115-9.

Abstract

Chromatin conformation plays an important role in a variety of genomic processes. Hi-C is one of the most popular assays for inspecting chromatin conformation. However, the utility of Hi-C contact maps is bottlenecked by resolution. Here we present VEHiCLE, a deep learning algorithm for resolution enhancement of Hi-C contact data. VEHiCLE utilises a variational autoencoder and adversarial training strategy equipped with four loss functions (adversarial loss, variational loss, chromosome topology-inspired insulation loss, and mean square error loss) to enhance contact maps, making them more viable for downstream analysis. VEHiCLE expands previous efforts at Hi-C super resolution by providing novel insight into the biologically meaningful and human interpretable feature extraction. Using a deep variational autoencoder, VEHiCLE provides a user tunable, full generative model for generating synthetic Hi-C data while also providing state-of-the-art results in enhancement of Hi-C data across multiple metrics.

摘要

染色质构象在各种基因组过程中起着重要作用。Hi-C 是检测染色质构象的最流行的分析方法之一。然而,Hi-C 接触图谱的实用性受到分辨率的限制。在这里,我们提出了 VEHiCLE,这是一种用于增强 Hi-C 接触数据分辨率的深度学习算法。VEHiCLE 利用变分自动编码器和带有四个损失函数(对抗损失、变分损失、基于染色体拓扑的隔离损失和均方误差损失)的对抗训练策略来增强接触图谱,使其更适合下游分析。VEHiCLE 通过为生物有意义和人类可解释的特征提取提供新的见解,扩展了之前的 Hi-C 超分辨率工作。使用深度变分自动编码器,VEHiCLE 为生成合成 Hi-C 数据提供了用户可调节的、完整的生成模型,同时在多个指标上增强 Hi-C 数据方面也取得了最先进的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f1e/8065109/c775a874fc10/41598_2021_88115_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验