Angel J Carlos, El Amraoui Narjis, Gürsoy Gamze
Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, United States.
New York Genome Center, New York, NY 10013, United States.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf289.
The three-dimensional (3D) organization of the genome is crucial for gene regulation, with disruptions linked to various diseases. High-throughput Chromosome Conformation Capture (Hi-C) and related technologies have advanced our understanding of 3D genome organization by mapping interactions between distal genomic regions. However, capturing enhancer-promoter interactions at high resolution remains challenging due to the high sequencing depth required. We introduce pC-SAC (probabilistically Constrained Self-Avoiding Chromatin), a novel computational method for producing accurate high-resolution Hi-C matrices from low-resolution data. pC-SAC uses adaptive importance sampling with sequential Monte Carlo to generate ensembles of 3D chromatin chains that satisfy physical constraints derived from low-resolution Hi-C data. Our method achieves over 95% accuracy in reconstructing high-resolution chromatin maps and identifies novel interactions enriched with candidate cis-regulatory elements (cCREs) and expression quantitative trait loci (eQTLs). Benchmarking against state-of-the-art deep learning models demonstrates pC-SAC's performance in both short- and long-range interaction reconstruction. pC-SAC offers a cost-effective solution for enhancing the resolution of Hi-C data, thus enabling deeper insights into 3D genome organization and its role in gene regulation and disease. Our tool can be found at https://github.com/G2Lab/pCSAC.
基因组的三维(3D)组织对于基因调控至关重要,其破坏与多种疾病相关。高通量染色体构象捕获(Hi-C)及相关技术通过绘制远端基因组区域之间的相互作用,推进了我们对3D基因组组织的理解。然而,由于所需的高测序深度,以高分辨率捕获增强子-启动子相互作用仍然具有挑战性。我们引入了pC-SAC(概率约束自回避染色质),这是一种从低分辨率数据生成准确高分辨率Hi-C矩阵的新型计算方法。pC-SAC使用带有序贯蒙特卡罗的自适应重要性采样来生成满足从低分辨率Hi-C数据导出的物理约束的3D染色质链集合。我们的方法在重建高分辨率染色质图谱方面实现了超过95%的准确率,并识别出富含候选顺式调控元件(cCRE)和表达数量性状位点(eQTL)的新型相互作用。与最先进的深度学习模型进行基准测试证明了pC-SAC在短程和长程相互作用重建方面的性能。pC-SAC为提高Hi-C数据的分辨率提供了一种经济高效的解决方案,从而能够更深入地了解3D基因组组织及其在基因调控和疾病中的作用。我们的工具可在https://github.com/G2Lab/pCSAC上找到。