Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands.
Computational Mathematics Group, Discipline group Mathematics and statistics, Faculty of Science, Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 BE, Diepenbeek, Belgium.
Biomech Model Mechanobiol. 2021 Aug;20(4):1459-1475. doi: 10.1007/s10237-021-01456-2. Epub 2021 Apr 23.
The phenomenological model for cell shape deformation and cell migration Chen (BMM 17:1429-1450, 2018), Vermolen and Gefen (BMM 12:301-323, 2012), is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental observations in Mak et al. (LC 13:340-348, 2013), where transmigration of cancer cells through narrow apertures is studied, are reproduced using a Monte Carlo framework.
细胞形状变形和细胞迁移的现象学模型陈(BMM 17:1429-1450,2018)、Vermolen 和 Gefen(BMM 12:301-323,2012),通过纳入细胞牵引力和细胞分化导致的细胞平衡形状的演变进行了扩展。使用形态弹性理论对细胞外基质的塑性变形进行建模。使用有限元方法求解得到的偏微分微分方程。本文处理了各种需要细胞迁移和细胞形状演变的生物学场景。Mak 等人的实验观察(LC 13:340-348,2013),研究了癌细胞通过狭窄孔道的迁移,使用蒙特卡罗框架进行了再现。