Suppr超能文献

用于鉴定特应性皮炎中对度普利尤单抗无应答者的药物靶标最佳组合的数学模型。

A mathematical model to identify optimal combinations of drug targets for dupilumab poor responders in atopic dermatitis.

机构信息

Department of Bioengineering, Imperial College London, London, UK.

Pediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland.

出版信息

Allergy. 2022 Feb;77(2):582-594. doi: 10.1111/all.14870. Epub 2021 May 5.

Abstract

BACKGROUND

Several biologics for atopic dermatitis (AD) have demonstrated good efficacy in clinical trials, but with a substantial proportion of patients being identified as poor responders. This study aims to understand the pathophysiological backgrounds of patient variability in drug response, especially for dupilumab, and to identify promising drug targets in dupilumab poor responders.

METHODS

We conducted model-based meta-analysis of recent clinical trials of AD biologics and developed a mathematical model that reproduces reported clinical efficacies for nine biological drugs (dupilumab, lebrikizumab, tralokinumab, secukinumab, fezakinumab, nemolizumab, tezepelumab, GBR 830, and recombinant interferon-gamma) by describing system-level AD pathogenesis. Using this model, we simulated the clinical efficacy of hypothetical therapies on virtual patients.

RESULTS

Our model reproduced reported time courses of %improved EASI and EASI-75 of the nine drugs. The global sensitivity analysis and model simulation indicated the baseline level of IL-13 could stratify dupilumab good responders. Model simulation on the efficacies of hypothetical therapies revealed that simultaneous inhibition of IL-13 and IL-22 was effective, whereas application of the nine biologic drugs was ineffective, for dupilumab poor responders (EASI-75 at 24 weeks: 21.6% vs. max. 1.9%).

CONCLUSION

Our model identified IL-13 as a potential predictive biomarker to stratify dupilumab good responders, and simultaneous inhibition of IL-13 and IL-22 as a promising drug therapy for dupilumab poor responders. This model will serve as a computational platform for model-informed drug development for precision medicine, as it allows evaluation of the effects of new potential drug targets and the mechanisms behind patient variability in drug response.

摘要

背景

几种治疗特应性皮炎(AD)的生物制剂在临床试验中已显示出良好的疗效,但仍有相当一部分患者被认为是无应答者。本研究旨在了解药物反应个体差异的病理生理背景,特别是针对度普利尤单抗,并确定度普利尤单抗无应答者中有希望的药物靶点。

方法

我们对 AD 生物制剂的近期临床试验进行了基于模型的荟萃分析,并开发了一个数学模型,通过描述系统水平的 AD 发病机制,再现了九种生物药物(度普利尤单抗、 lebrikizumab、tralokinumab、secukinumab、fezakinumab、nemolizumab、tezepelumab、GBR 830 和重组干扰素-γ)报告的临床疗效。使用该模型,我们在虚拟患者身上模拟了假设疗法的临床疗效。

结果

我们的模型再现了九种药物报告的 %改善 EASI 和 EASI-75 的时间过程。全局敏感性分析和模型模拟表明,IL-13 的基线水平可将度普利尤单抗的应答者分层。对假设疗法疗效的模型模拟表明,同时抑制 IL-13 和 IL-22 是有效的,而应用这九种生物制剂对度普利尤单抗无应答者无效(24 周时 EASI-75:21.6% vs. 最大 1.9%)。

结论

我们的模型确定 IL-13 是分层度普利尤单抗应答者的潜在预测生物标志物,同时抑制 IL-13 和 IL-22 是治疗度普利尤单抗无应答者的有希望的药物疗法。该模型将作为一个计算平台,用于基于模型的药物开发,以实现精准医学,因为它允许评估新的潜在药物靶点的效果和药物反应个体差异的背后机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验