Suppr超能文献

DNA 链置换的首过时间研究。

First passage time study of DNA strand displacement.

机构信息

School of Physics, Georgia Institute of Technology, Atlanta, Georgia.

School of Physics, Georgia Institute of Technology, Atlanta, Georgia.

出版信息

Biophys J. 2021 Jun 15;120(12):2400-2412. doi: 10.1016/j.bpj.2021.01.043. Epub 2021 Apr 22.

Abstract

DNA strand displacement, in which a single-stranded nucleic acid invades a DNA duplex, is pervasive in genomic processes and DNA engineering applications. The kinetics of strand displacement have been studied in bulk; however, the kinetics of the underlying strand exchange were obfuscated by a slow bimolecular association step. Here, we use a novel single-molecule fluorescence resonance energy transfer approach termed the "fission" assay to obtain the full distribution of first passage times of unimolecular strand displacement. At a frame time of 4.4 ms, the first passage time distribution for a 14-nucleotide displacement domain exhibited a nearly monotonic decay with little delay. Among the eight different sequences we tested, the mean displacement time was on average 35 ms and varied by up to a factor of 13. The measured displacement kinetics also varied between complementary invaders and between RNA and DNA invaders of the same base sequence, except for T → U substitution. However, displacement times were largely insensitive to the monovalent salt concentration in the range of 0.25-1 M. Using a one-dimensional random walk model, we infer that the single-step displacement time is in the range of ∼30-300 μs, depending on the base identity. The framework presented here is broadly applicable to the kinetic analysis of multistep processes investigated at the single-molecule level.

摘要

DNA 链置换,即单链核酸侵入 DNA 双链,在基因组过程和 DNA 工程应用中普遍存在。链置换的动力学已在体相研究中进行了研究;然而,由于双分子缔合步骤缓慢,导致潜在的链交换动力学变得复杂。在这里,我们使用一种新的单分子荧光共振能量转移方法,称为“裂变”测定法,以获得单分子链置换的首次通过时间的完整分布。在 4.4ms 的帧时间下,14 个核苷酸置换结构域的首次通过时间分布呈近单调衰减,几乎没有延迟。在我们测试的八个不同序列中,平均置换时间平均为 35ms,变化幅度高达 13 倍。除 T→U 替换外,测量的置换动力学在互补入侵物之间以及相同碱基序列的 RNA 和 DNA 入侵物之间也有所不同。然而,置换时间对 0.25-1M 范围内的单价盐浓度基本不敏感。使用一维随机游动模型,我们推断单步置换时间在 30-300μs 范围内,具体取决于碱基的种类。这里提出的框架广泛适用于在单分子水平上研究的多步过程的动力学分析。

相似文献

1
First passage time study of DNA strand displacement.
Biophys J. 2021 Jun 15;120(12):2400-2412. doi: 10.1016/j.bpj.2021.01.043. Epub 2021 Apr 22.
3
Toehold-mediated nonenzymatic DNA strand displacement as a platform for DNA genotyping.
J Am Chem Soc. 2013 Apr 17;135(15):5612-9. doi: 10.1021/ja310991r. Epub 2013 Apr 3.
4
Sub-Ensemble Monitoring of DNA Strand Displacement Using Multiparameter Single-Molecule FRET.
Chemphyschem. 2018 Mar 5;19(5):551-555. doi: 10.1002/cphc.201800012. Epub 2018 Jan 26.
6
The Effect of Basepair Mismatch on DNA Strand Displacement.
Biophys J. 2016 Apr 12;110(7):1476-1484. doi: 10.1016/j.bpj.2016.02.027.
7
Strong sequence-dependence in RNA/DNA hybrid strand displacement kinetics.
Nanoscale. 2024 Sep 26;16(37):17624-17637. doi: 10.1039/d4nr00542b.
9
10
Toehold-Mediated Displacement of an Adenosine-Binding Aptamer from a DNA Duplex by its Ligand.
Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13710-13713. doi: 10.1002/anie.201603458. Epub 2016 Sep 30.

引用本文的文献

1
Kinetics and dynamics of oligonucleotide hybridization.
Nat Rev Chem. 2025 May;9(5):305-327. doi: 10.1038/s41570-025-00704-8. Epub 2025 Apr 11.
2
Single-molecule force spectroscopy of toehold-mediated strand displacement.
Nat Commun. 2024 Aug 31;15(1):7564. doi: 10.1038/s41467-024-51813-9.
3
Twinkle-Catalyzed Toehold-Mediated DNA Strand Displacement Reaction.
J Am Chem Soc. 2023 Nov 2. doi: 10.1021/jacs.3c04970.
4
Crystal structure of an RNA/DNA strand exchange junction.
PLoS One. 2022 Apr 18;17(4):e0263547. doi: 10.1371/journal.pone.0263547. eCollection 2022.
5
Cotranscriptionally encoded RNA strand displacement circuits.
Sci Adv. 2022 Mar 25;8(12):eabl4354. doi: 10.1126/sciadv.abl4354. Epub 2022 Mar 23.
6
Getting swept off your toe(hold)s: Single-molecule DNA fission analysis offers glimpse into kinetics of branch migration.
Biophys J. 2021 Jun 15;120(12):2367-2369. doi: 10.1016/j.bpj.2021.04.014. Epub 2021 Apr 22.

本文引用的文献

1
CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks.
Elife. 2020 Jun 10;9:e55143. doi: 10.7554/eLife.55143.
2
Controlling the DNA Hybridization Chain Reaction.
J Am Chem Soc. 2020 May 13;142(19):8596-8601. doi: 10.1021/jacs.0c02892. Epub 2020 May 1.
3
Salt effect on thermodynamics and kinetics of a single RNA base pair.
RNA. 2020 Apr;26(4):470-480. doi: 10.1261/rna.073882.119. Epub 2020 Jan 27.
4
U1 snRNP regulates cancer cell migration and invasion in vitro.
Nat Commun. 2020 Jan 7;11(1):1. doi: 10.1038/s41467-019-13993-7.
5
Strand displacement DNA synthesis by DNA polymerase gp90 exo of Pseudomonas aeruginosa phage 1.
Biochimie. 2020 Mar;170:73-87. doi: 10.1016/j.biochi.2019.12.013. Epub 2020 Jan 3.
6
DNA Strand Displacement Reaction: A Powerful Tool for Discriminating Single Nucleotide Variants.
Top Curr Chem (Cham). 2020 Jan 2;378(1):10. doi: 10.1007/s41061-019-0274-z.
7
Single-Step FRET-Based Detection of Femtomoles DNA.
Sensors (Basel). 2019 Aug 9;19(16):3495. doi: 10.3390/s19163495.
9
An emergent understanding of strand displacement in RNA biology.
J Struct Biol. 2019 Sep 1;207(3):241-249. doi: 10.1016/j.jsb.2019.06.005. Epub 2019 Jun 18.
10
Fluorescent S1 nuclease assay utilizing exponential strand displacement amplification.
Analyst. 2019 May 13;144(10):3364-3368. doi: 10.1039/c9an00300b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验