Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, P. R. China.
Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China..
Acta Biomater. 2021 Oct 1;133:280-296. doi: 10.1016/j.actbio.2021.04.035. Epub 2021 Apr 21.
Adhesion formation during tendon healing remains a severe problem in clinical practice. Multiple factors contribute to postoperative adhesion formation, and macrophage-driven inflammation is thought to be greatly involved in this process. We hypothesize that reducing macrophage-mediated inflammation in the injured tendon by regulating M1 to M2 macrophage polarization may effectively inhibit adhesion formation. Here, we developed an acellular immunomodulatory biomaterial consisting of an electrospun polycaprolactone/silk fibroin (PCL/SF) composite fibrous scaffold functionalized with mesenchymal stem cell (MSC)-derived extracellular matrix (ECM). To enhance the immunoregulatory potential of MSCs, we performed inflammatory licensing with IFN-γ to obtain immunomodulatory ECM (iECM). Proteomic analyses of MSCs and their secreted ECM components from different culture conditions revealed the MSC-ECM molecular signatures and the potential mechanism of ECM immunoregulation. Then, the immunoregulatory potential of the iECM-modified scaffold was evaluated in vitro and in vivo. Relative to the PCL/SF fibrous scaffold, the iECM-functionalized scaffold facilitated M2 macrophage polarization and inhibited the expression of multiple cytokines (IL-1β, IL-6, CXCL11, IL-10, IL-1R2, and TGF-β1) in vitro, strongly suggesting the immunosuppressive ability of iECM derived from inflammatory licensed MSCs. Consistent with the in vitro findings, the results of rat subcutaneous implantation indicated that a markedly lower foreign-body reaction (FBR) was obtained in the PCL/SF-iECM group than in the other groups, as evidenced by thinner fibrotic capsule formation, less type I collagen production and more M2-type macrophage polarization. In the rat Achilles tendon injury model, the PCL/SF-iECM scaffold greatly mitigated tendon adhesion with clear sheath space formation between the tendon and the scaffold. These data highlight the immunomodulatory potential of iECM-functionalized fibrous scaffolds to attenuate FBR by modulating M2 macrophage polarization, thereby preventing tendon adhesion. STATEMENT OF SIGNIFICANCE: Electrospun PCL/SF fibrous scaffolds functionalized with ECM secreted by MSCs stimulated by inflammatory factor IFN-γ was developed that combined physical barrier and immunomodulatory functions to prevent tendon adhesion formation. PCL/SF micro-nanoscale bimodal fibrous scaffolds prepared by emulsion electrospinning possess high porosity and a large pore size beneficial for nutrient transport to promote intrinsic healing; moreover, surface modification with immunomodulatory ECM (iECM) mitigates the FBR of fibrous scaffolds to prevent tendon adhesion. The iECM-functionalized electrospun scaffolds exhibit powerful immunomodulatory potency in vitro and in vivo. Moreover, the iECM-modified scaffolds, as an anti-adhesion physical barrier with immunomodulatory ability, have an excellent performance in a rat Achilles tendon adhesion model. MSC secretome-based therapeutics, as an acellular regenerative medicine strategy, are expected to be applied to other inflammatory diseases due to its strong immunoregulatory potential.
在肌腱愈合过程中形成粘连仍然是临床实践中的一个严重问题。多种因素导致术后粘连形成,而巨噬细胞驱动的炎症被认为在这个过程中起着重要作用。我们假设通过调节 M1 向 M2 巨噬细胞极化来减少受伤肌腱中的巨噬细胞介导的炎症,可能有效地抑制粘连形成。在这里,我们开发了一种无细胞免疫调节生物材料,由静电纺丝的聚己内酯/丝素纤维(PCL/SF)复合纤维支架组成,该支架功能化有间充质干细胞(MSC)衍生的细胞外基质(ECM)。为了增强 MSC 的免疫调节潜力,我们用 IFN-γ 对其进行炎症许可处理,以获得免疫调节细胞外基质(iECM)。对不同培养条件下 MSC 及其分泌的 ECM 成分进行蛋白质组学分析,揭示了 MSC-ECM 的分子特征和 ECM 免疫调节的潜在机制。然后,在体外和体内评估了 iECM 修饰支架的免疫调节潜力。与 PCL/SF 纤维支架相比,iECM 功能化支架促进了 M2 巨噬细胞极化,并抑制了多种细胞因子(IL-1β、IL-6、CXCL11、IL-10、IL-1R2 和 TGF-β1)的表达,这强烈表明源自炎症许可 MSC 的 iECM 具有免疫抑制能力。与体外研究结果一致,大鼠皮下植入的结果表明,PCL/SF-iECM 组的异物反应(FBR)明显低于其他组,表现为纤维囊形成较薄,I 型胶原产生较少,M2 型巨噬细胞极化较多。在大鼠跟腱损伤模型中,PCL/SF-iECM 支架极大地减轻了跟腱粘连,腱和支架之间形成明显的鞘空间。这些数据突出了 iECM 功能化纤维支架通过调节 M2 巨噬细胞极化来减轻 FBR 的免疫调节潜力,从而防止肌腱粘连。
通过用炎性因子 IFN-γ 刺激的 MSC 分泌的细胞外基质对静电纺丝的 PCL/SF 纤维支架进行功能化,开发了一种结合物理屏障和免疫调节功能的纤维支架,以防止肌腱粘连形成。通过乳液静电纺丝制备的 PCL/SF 微纳双模态纤维支架具有高孔隙率和大孔径,有利于营养物质的运输,从而促进内在愈合;此外,用免疫调节细胞外基质(iECM)对表面进行修饰可减轻纤维支架的异物反应(FBR),从而防止肌腱粘连。体外和体内实验均表明 iECM 功能化的静电纺丝支架具有强大的免疫调节能力。此外,作为具有免疫调节能力的抗粘连物理屏障,iECM 修饰的支架在大鼠跟腱粘连模型中表现出优异的性能。基于 MSC 分泌组的治疗方法作为一种无细胞再生医学策略,由于其强大的免疫调节潜力,有望应用于其他炎症性疾病。