Suppr超能文献

通过纳入时变权重,直接建立年龄标准化边际相对生存率模型。

Direct modelling of age standardized marginal relative survival through incorporation of time-dependent weights.

机构信息

Biostatistics Research Group, Department of Health Sciences, University of Leicester, University Road, Leicester, UK.

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels Väg 12A, Stockholm, Sweden.

出版信息

BMC Med Res Methodol. 2021 Apr 24;21(1):84. doi: 10.1186/s12874-021-01266-1.

Abstract

BACKGROUND

When quantifying the probability of survival in cancer patients using cancer registration data, it is common to estimate marginal relative survival, which under assumptions can be interpreted as marginal net survival. Net survival is a hypothetical construct giving the probability of being alive if it was only possible to die of the cancer under study, enabling comparisons between populations with differential mortality rates due to causes other the cancer under study. Marginal relative survival can be estimated non-parametrically (Pohar Perme estimator) or in a modeling framework. In a modeling framework, even when just interested in marginal relative survival it is necessary to model covariates that affect the expected mortality rates (e.g. age, sex and calendar year). The marginal relative survival function is then obtained through regression standardization. Given that these covariates will generally have non-proportional effects, the model can become complex before other exposure variables are even considered.

METHODS

We propose a flexible parametric model incorporating restricted cubic splines that directly estimates marginal relative survival and thus removes the need to model covariates that affect the expected mortality rates. In order to do this the likelihood needs to incorporate the marginal expected mortality rates at each event time taking account of informative censoring. In addition time-dependent weights are incorporated into the likelihood. An approximation is proposed through splitting the time scale into intervals, which enables the marginal relative survival model to be fitted using standard software. Additional weights can be incorporated when standardizing to an external reference population.

RESULTS

The methods are illustrated using national cancer registry data. In addition, a simulation study is performed to compare different estimators; a non-parametric approach, regression-standardization and the new marginal relative model. The simulations study shows the new approach is unbiased and has good relative precision compared to the non-parametric estimator.

CONCLUSION

The approach enables estimation of standardized marginal relative survival without the need to model covariates that affect expected mortality rates and thus reduces the chance of model misspecification.

摘要

背景

在使用癌症登记数据量化癌症患者的生存概率时,通常会估计边缘相对生存率,在假设条件下,这可以解释为边缘净生存率。净生存率是一个假设的构造,它给出了如果仅有可能死于研究中的癌症,那么生存的概率,从而能够比较由于研究中的癌症以外的其他原因导致死亡率不同的人群。边缘相对生存率可以通过非参数(Pohar Perme 估计量)或建模框架进行估计。在建模框架中,即使只对边缘相对生存率感兴趣,也需要对影响预期死亡率的协变量(例如年龄、性别和日历年份)进行建模。然后通过回归标准化获得边缘相对生存率函数。鉴于这些协变量通常具有不成比例的影响,在考虑其他暴露变量之前,模型可能会变得复杂。

方法

我们提出了一种灵活的参数模型,该模型包含限制立方样条,可以直接估计边缘相对生存率,从而无需对影响预期死亡率的协变量进行建模。为了做到这一点,似然需要考虑到信息性删失,在每个事件时间点纳入边缘预期死亡率。此外,还将时变权重纳入似然中。通过将时间尺度划分为区间,提出了一种近似方法,从而可以使用标准软件拟合边缘相对生存率模型。在将其标准化到外部参考人群时,可以纳入额外的权重。

结果

该方法使用国家癌症登记数据进行了说明。此外,还进行了一项模拟研究,以比较不同的估计器,包括非参数方法、回归标准化和新的边缘相对模型。模拟研究表明,新方法是无偏的,与非参数估计器相比具有良好的相对精度。

结论

该方法能够在无需对影响预期死亡率的协变量进行建模的情况下估计标准化的边缘相对生存率,从而减少模型误设的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8070293/191e54a1b7cc/12874_2021_1266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验