Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland.
Chem Soc Rev. 2020 Feb 21;49(4):1253-1321. doi: 10.1039/c9cs00283a. Epub 2020 Jan 30.
Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiO, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.
最近,由于其安全性、具有成本效益的制造工艺、大表面积、高稳定性以及在形状、尺寸和孔隙率方面的高多功能性,含铋纳米材料的研究已从光学、化学、电子和工程领域扩展到生物医学领域。铋作为一种无毒且廉价的抗磁性重金属,已被用于制造各种具有独特结构、物理化学和组成特征的纳米粒子(NPs),以结合各种特性,例如有利的高 X 射线衰减系数和近红外(NIR)吸收率、出色的光热转换效率和长循环半衰期。这些特性使含铋纳米粒子(BiNPs)具有联合癌症治疗、光热和放射治疗(RT)、多模态成像、治疗学、药物输送、生物传感和组织工程的理想性能。铋卤氧化物(BiO,其中 X 是 Cl、Br 或 I)和铋硫属化物,包括氧化铋、硫化铋、硒化铋和碲化铋,已被广泛研究用于治疗目的。通过简单地用生物相容性聚合物和蛋白质修饰这些 BiNPs 的表面,可以轻松改善它们的药代动力学,从而提高胶体稳定性、延长血液循环并降低毒性。理想的抗菌效果、骨再生潜力和在近红外激光辐射下抑制肿瘤生长是涉及 BiNPs 的主要生物医学研究领域,为它们的未来临床转化开辟了新的范例。本综述强调了具有不同结构、尺寸和组成的 BiNPs 的合成和最先进的进展。此外,还提出了一个全面的讨论,重点关注挑战和未来的机遇。