Suppr超能文献

基于约束的代谢控制分析用于理性的菌株工程。

Constraint-based metabolic control analysis for rational strain engineering.

机构信息

Laboratory of Computational Systems Biology (LCSB), EPFL, CH-1015, Lausanne, Switzerland.

Laboratory of Computational Systems Biology (LCSB), EPFL, CH-1015, Lausanne, Switzerland.

出版信息

Metab Eng. 2021 Jul;66:191-203. doi: 10.1016/j.ymben.2021.03.003. Epub 2021 Apr 22.

Abstract

The advancements in genome editing techniques over the past years have rekindled interest in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-established method for quantifying the effects of metabolic engineering interventions on flows in metabolic networks and metabolite concentrations, it does not consider the physiological limitations of the cellular environment and metabolic engineering design constraints. We report here a constraint-based framework, Network Response Analysis (NRA), for rational genetic strain design. NRA is cast as a Mixed-Integer Linear Programming problem that integrates MCA, Thermodynamically-based Flux Analysis (TFA), biologically relevant constraints, as well as genome editing restrictions into a comprehensive platform for identifying metabolic engineering targets. We show that the NRA formulation and its core constraints are equivalent to the ones of Flux Balance Analysis (FBA) and TFA, which allows it to be used for a wide range of optimization criteria and with various physiological constraints. We also show how the parametrization and introduction of biological constraints enhance the NRA formulation compared to the classical MCA approach, and we demonstrate its features and its ability to generate multiple alternative optimal strategies given several user-defined boundaries and objectives. In summary, NRA is a sophisticated alternative to classical MCA for rational metabolic engineering that accommodates the incorporation of physiological data at metabolic flux, metabolite concentration, and enzyme expression levels.

摘要

近年来,基因组编辑技术的进步重新点燃了人们对理性代谢工程策略的兴趣。虽然代谢控制分析(MCA)是一种用于量化代谢工程干预对代谢网络流量和代谢物浓度影响的成熟方法,但它没有考虑细胞环境的生理限制和代谢工程设计约束。我们在这里报告了一种基于约束的框架,即网络响应分析(NRA),用于理性的遗传菌株设计。NRA 被构造成一个混合整数线性规划问题,它将 MCA、基于热力学的通量分析(TFA)、与生物学相关的约束以及基因组编辑限制集成到一个综合平台中,用于确定代谢工程目标。我们表明,NRA 公式及其核心约束与通量平衡分析(FBA)和 TFA 的约束相同,这使其能够用于广泛的优化标准和各种生理约束。我们还展示了如何通过参数化和引入生物约束来增强 NRA 公式与经典 MCA 方法相比的优势,并展示了其功能以及在给定多个用户定义的边界和目标的情况下生成多种替代最优策略的能力。总之,NRA 是一种用于理性代谢工程的复杂 MCA 替代方法,可以在代谢通量、代谢物浓度和酶表达水平上纳入生理数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验