Pil'nik Andrey A, Chernov Andrey A, Islamov Damir R
Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090.
Novosibirsk State University, Novosibirsk, Russian Federation, 630090.
Sci Rep. 2021 May 13;11(1):10163. doi: 10.1038/s41598-021-89280-7.
In this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley-Read-Hall-like transport equations, which describe the 1D transport through dielectric layers, might incorrectly describe the charge flow through ultra-thin layers with a countable number of traps, taking into account the injection from and extraction to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for the dynamics of system evolution for special cases. These solutions can be used to test the code and for studying the charge transport properties of thin dielectric films.
在本研究中,我们建立了一种关于薄介电薄膜中被俘获电子或空穴电荷输运的离散理论,该理论适用于可数陷阱和大量陷阱的情况。结果表明,描述通过介电层一维输运的类肖克利 - 里德 - 霍尔输运方程,在考虑电极(接触)的注入和提取时,可能会错误地描述通过具有可数陷阱数的超薄层的电荷流动。与其他理论模型的比较显示出良好的一致性。所开发的模型可应用于一维、二维和三维系统。该模型以线性代数方程组的形式表述,可以使用不同的优化库在计算代码中实现。我们证明,对于任何陷阱分布的稳态情况以及特殊情况下系统演化的动力学,都可以找到解析解。这些解可用于测试代码以及研究薄介电薄膜的电荷输运特性。