Suppr超能文献

避免大数据陷阱。

Avoiding big data pitfalls.

作者信息

Lamata Pablo

机构信息

Department of Biomedical Engineering, King's College London, UK.

出版信息

Heart Metab. 2020;82:33-35. doi: 10.31887/hm.2020.82/plamata.

Abstract

Clinical decisions are based on a combination of inductive inference built on experience (ie, statistical models) and on deductions provided by our understanding of the workings of the cardiovascular system (ie, mechanistic models). In a similar way, computers can be used to discover new hidden patterns in the (big) data and to make predictions based on our knowledge of physiology or physics. Surprisingly, unlike humans through history, computers seldom combine inductive and deductive processes. An explosion of expectations surrounds the computer's inductive method, fueled by the "big data" and popular trends. This article reviews the risks and potential pitfalls of this computer approach, where the lack of generality, selection or confounding biases, overfitting, or spurious correlations are among the commonplace flaws. Recommendations to reduce these risks include an examination of data through the lens of causality, the careful choice and description of statistical techniques, and an open research culture with transparency. Finally, the synergy between mechanistic and statistical models (ie, the digital twin) is discussed as a promising pathway toward precision cardiology that mimics the human experience.

摘要

临床决策基于建立在经验之上的归纳推理(即统计模型)和我们对心血管系统运作的理解所提供的演绎推理(即机制模型)的结合。同样,计算机可用于在(大)数据中发现新的隐藏模式,并基于我们的生理学或物理学知识进行预测。令人惊讶的是,与历史上的人类不同,计算机很少将归纳和演绎过程结合起来。由“大数据”和流行趋势推动,围绕计算机归纳方法的期望激增。本文回顾了这种计算机方法的风险和潜在陷阱,其中缺乏普遍性、选择或混杂偏差、过度拟合或虚假相关性是常见的缺陷。降低这些风险的建议包括从因果关系的角度审视数据、仔细选择和描述统计技术,以及建立具有透明度的开放研究文化。最后,讨论了机制模型和统计模型之间的协同作用(即数字孪生),作为迈向模拟人类经验的精准心脏病学的一条有前景的途径。

相似文献

1
Avoiding big data pitfalls.避免大数据陷阱。
Heart Metab. 2020;82:33-35. doi: 10.31887/hm.2020.82/plamata.
6
Teaching Mode Based on Educational Big Data Mining and Digital Twins.基于教育大数据挖掘和数字孪生的教学模式。
Comput Intell Neurosci. 2022 Feb 16;2022:9071944. doi: 10.1155/2022/9071944. eCollection 2022.

本文引用的文献

3
A fairer way forward for AI in health care.医疗保健领域人工智能更公平的发展之路。
Nature. 2019 Sep;573(7775):S103-S105. doi: 10.1038/d41586-019-02872-2.
5
Computational models in cardiology.心脏病学中的计算模型。
Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.
6
Big Data and Machine Learning in Health Care.医疗保健中的大数据与机器学习
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.
7
Challenges of Big Data Analysis.大数据分析的挑战
Natl Sci Rev. 2014 Jun;1(2):293-314. doi: 10.1093/nsr/nwt032.
9
Evidence-based medicine in the EMR era.电子病历时代的循证医学
N Engl J Med. 2011 Nov 10;365(19):1758-9. doi: 10.1056/NEJMp1108726. Epub 2011 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验