Håkonsen Verner, Singh Gurvinder, De Toro José A, Normile Peter S, Wahlström Erik, He Jianying, Zhang Zhiliang
NTNU Nanomechanical Lab Department of Structural Engineering Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway.
School of Biomedical Engineering University of Sydney Sydney NSW 2008 Australia.
Adv Sci (Weinh). 2021 Feb 15;8(8):2002683. doi: 10.1002/advs.202002683. eCollection 2021 Apr.
Enhancement of mechanical properties in self-assembled superstructures of magnetic nanoparticles is a new emerging aspect of their remarkable collective behavior. However, how magnetic interactions modulate mechanical properties is, to date, not fully understood. Through a comprehensive Monte Carlo investigation, this study demonstrates how the mechanical properties of self-assembled magnetic nanocubes can be controlled intrinsically by the nanoparticle magnetocrystalline anisotropy (MA), as well as by the superstructure shape anisotropy, without any need for changes in structural design (i.e., nanoparticle size, shape, and packing arrangement). A low MA-to-dipolar energy ratio, as found in iron oxide and permalloy systems, favors isotropic mechanical superstructure stabilization, whereas a high ratio yields magnetically blocked nanoparticle macrospins which can give rise to metastable , as expected in cobalt ferrite simple cubic supercrystals. Such full parallel alignment of the particle moments is shown to induce mechanical anisotropy, where the superior high-strength axis can be remotely reconfigured by means of an applied magnetic field. The new concepts developed here pave the way for the experimental realization of smart magneto-micromechanical systems (based, e.g., on the permanent super-magnetostriction effect illustrated here) and inspire new design rules for applied functional materials.
磁性纳米颗粒自组装超结构中力学性能的增强是其显著集体行为的一个新出现的方面。然而,迄今为止,磁相互作用如何调节力学性能尚未完全理解。通过全面的蒙特卡罗研究,本研究展示了自组装磁性纳米立方体的力学性能如何通过纳米颗粒磁晶各向异性(MA)以及超结构形状各向异性内在地控制,而无需改变结构设计(即纳米颗粒尺寸、形状和堆积排列)。在氧化铁和坡莫合金系统中发现的低MA与偶极能量比有利于各向同性力学超结构的稳定,而高比值会产生磁性阻塞的纳米颗粒宏观自旋,这可能导致亚稳态,如在钴铁氧体简单立方超晶体中所预期的那样。颗粒磁矩的这种完全平行排列显示出会引起力学各向异性,其中高强度轴可以通过施加磁场远程重新配置。这里开发的新概念为智能磁微机械系统的实验实现(例如基于此处说明的永久超磁致伸缩效应)铺平了道路,并激发了应用功能材料的新设计规则。