Suppr超能文献

自组装磁性超结构中的可重构机械各向异性

Reconfigurable Mechanical Anisotropy in Self-Assembled Magnetic Superstructures.

作者信息

Håkonsen Verner, Singh Gurvinder, De Toro José A, Normile Peter S, Wahlström Erik, He Jianying, Zhang Zhiliang

机构信息

NTNU Nanomechanical Lab Department of Structural Engineering Norwegian University of Science and Technology (NTNU) Trondheim 7491 Norway.

School of Biomedical Engineering University of Sydney Sydney NSW 2008 Australia.

出版信息

Adv Sci (Weinh). 2021 Feb 15;8(8):2002683. doi: 10.1002/advs.202002683. eCollection 2021 Apr.

Abstract

Enhancement of mechanical properties in self-assembled superstructures of magnetic nanoparticles is a new emerging aspect of their remarkable collective behavior. However, how magnetic interactions modulate mechanical properties is, to date, not fully understood. Through a comprehensive Monte Carlo investigation, this study demonstrates how the mechanical properties of self-assembled magnetic nanocubes can be controlled intrinsically by the nanoparticle magnetocrystalline anisotropy (MA), as well as by the superstructure shape anisotropy, without any need for changes in structural design (i.e., nanoparticle size, shape, and packing arrangement). A low MA-to-dipolar energy ratio, as found in iron oxide and permalloy systems, favors isotropic mechanical superstructure stabilization, whereas a high ratio yields magnetically blocked nanoparticle macrospins which can give rise to metastable , as expected in cobalt ferrite simple cubic supercrystals. Such full parallel alignment of the particle moments is shown to induce mechanical anisotropy, where the superior high-strength axis can be remotely reconfigured by means of an applied magnetic field. The new concepts developed here pave the way for the experimental realization of smart magneto-micromechanical systems (based, e.g., on the permanent super-magnetostriction effect illustrated here) and inspire new design rules for applied functional materials.

摘要

磁性纳米颗粒自组装超结构中力学性能的增强是其显著集体行为的一个新出现的方面。然而,迄今为止,磁相互作用如何调节力学性能尚未完全理解。通过全面的蒙特卡罗研究,本研究展示了自组装磁性纳米立方体的力学性能如何通过纳米颗粒磁晶各向异性(MA)以及超结构形状各向异性内在地控制,而无需改变结构设计(即纳米颗粒尺寸、形状和堆积排列)。在氧化铁和坡莫合金系统中发现的低MA与偶极能量比有利于各向同性力学超结构的稳定,而高比值会产生磁性阻塞的纳米颗粒宏观自旋,这可能导致亚稳态,如在钴铁氧体简单立方超晶体中所预期的那样。颗粒磁矩的这种完全平行排列显示出会引起力学各向异性,其中高强度轴可以通过施加磁场远程重新配置。这里开发的新概念为智能磁微机械系统的实验实现(例如基于此处说明的永久超磁致伸缩效应)铺平了道路,并激发了应用功能材料的新设计规则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f9/8061348/1247770d2f0b/ADVS-8-2002683-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验