Suppr超能文献

纳米超结构及其光学性质的调制。

Modulation of Nano-superstructures and Their Optical Properties.

机构信息

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

Acc Chem Res. 2022 Sep 6;55(17):2425-2438. doi: 10.1021/acs.accounts.2c00202. Epub 2022 Aug 17.

Abstract

Self-assembly, which enables spontaneous arrangement of objects, is of particular importance for nanomaterials in both fundamental and applied research fields. Multiple types of nanoparticle superstructures have been successfully built in highly controllable and efficient manners through balancing the nanoscale interactions. Uniform and proper arrangement of nanoparticles inside the assembled superstructures is essential to exhibit their constant, reliable, and homogeneous functionalities. To be specific, the long-range ordered superlattices not only succeed with their building blocks' intrinsic property, but also, more importantly, can display collective properties that are absent both in individual nanoparticles and in their bulk states. One of the most attractive aspects of nanomaterials is their exceptional optical properties that have tremendous application potential in multidisciplinary fields. In this regard, constructing the superstructures from optical nano units like noble metal nanostructures, semiconductor nanoparticles, or hybrid nanomaterials is critical for attaining the unique optical properties and exploring their practical applications in multiple fields including photonics, optoelectronics, optical sensing, photocatalysis, etc. In this Account, we provide guidelines for self-assembly strategies to fabricate the superstructures and discuss the optical properties that the superstructures display. In the first part, we categorize and discuss the key factors that strongly affect the self-assembly process and determine the configurational and integral quality of the superstructures. On one hand, the diversity and designability of nanoparticles offer the intrinsic complexity of the building blocks, including geometry, size, composition, and surface ligand, which efficiently tailors the assembly process and superstructure configuration. On the other hand, multiple factors originating from the introduction of extrinsic features are recognized to facilitate the metastable or dynamic self-assembly process. Such extrinsic features include both matter like DNA origami, peptides, small molecules, etc. and nonmatter involved with electric fields, magnetic fields, light, temperature, etc. In the second part, we introduce the state-of the art progress on the collective optical performances of the assembled superstructures, including (1) chiral optics, such as circular dichroism and circularly polarized luminescence, (2) plasmonic properties and related applications, and (3) luminescence related optics and their applications. Finally, we summarize the existing problems and main challenges briefly, and some future directions of this field are proposed. We envision that, with deep understanding of the assembly mechanism and development of the synthetic and surface chemistry, rational modulation of nanoassemblies will be the trend of this field, which is beneficial to achieve the emerging collective performances and create new generation devices with advanced functions.

摘要

自组装使物体能够自发排列,对于基础研究和应用研究领域的纳米材料都具有重要意义。通过平衡纳米尺度的相互作用,可以以高度可控和高效的方式构建多种类型的纳米颗粒超结构。在组装的超结构中,纳米颗粒的均匀和适当排列对于表现其恒定、可靠和均匀的功能至关重要。具体来说,长程有序超晶格不仅成功地利用了其组成部分的固有特性,而且更重要的是,可以表现出既不存在于单个纳米颗粒中也不存在于其体相状态中的集体性质。纳米材料最吸引人的方面之一是其出色的光学性质,这些性质在多学科领域具有巨大的应用潜力。在这方面,通过将光学纳米单元(如贵金属纳米结构、半导体纳米颗粒或杂化纳米材料)构建成超结构,对于获得独特的光学性质以及探索它们在包括光子学、光电学、光学传感、光催化等在内的多个领域中的实际应用至关重要。在本综述中,我们提供了用于自组装策略的指南,以构建超结构,并讨论了超结构所表现出的光学性质。在第一部分中,我们对强烈影响自组装过程并决定超结构的构象和整体质量的关键因素进行分类和讨论。一方面,纳米颗粒的多样性和可设计性提供了组成部分的内在复杂性,包括几何形状、尺寸、组成和表面配体,这些因素有效地调整了组装过程和超结构的构型。另一方面,从引入外部特征的角度出发,我们认识到多种因素有助于亚稳或动态自组装过程。这种外部特征包括 DNA 折纸、肽、小分子等物质以及涉及电场、磁场、光、温度等的非物质。在第二部分中,我们介绍了组装超结构的集体光学性能的最新进展,包括(1)手性光学,如圆二色性和圆偏振发光,(2)等离子体特性及相关应用,以及(3)发光相关光学及其应用。最后,我们简要总结了目前存在的问题和主要挑战,并提出了该领域的一些未来发展方向。我们设想,随着对组装机制的深入了解和对合成与表面化学的发展,对纳米组装体的合理调控将成为该领域的趋势,这有利于实现新兴的集体性能并创造具有先进功能的新一代器件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验