Suppr超能文献

在线社交网络中影响者的识别:考虑多维度因素探索的影响力测量

Identification of influencers in online social networks: measuring influence considering multidimensional factors exploration.

作者信息

Zhuang Yun-Bei, Li Zhi-Hong, Zhuang Yun-Jing

机构信息

School of Economics, Shandong University of Technology, ZiBo, 255000, China.

School of Business Administration, South China University of Technology, Guangzhou, 510641, China.

出版信息

Heliyon. 2021 Apr 15;7(4):e06472. doi: 10.1016/j.heliyon.2021.e06472. eCollection 2021 Apr.

Abstract

Online Social networks exhibit heterogeneous nature with nodes playing far different roles in structure and function. To identify influencers is thus very significant, allowing us to control the outbreak of public negative opinion, to conduct advertisements for e-commercial products, to predict popular scientific publications, and so on. The identification of influencers attracts increasing attentions from both computer science and communication science, with multiple dimensional metrics ranging from structure-based to information-based and action-based. However, most work simply rely on one dimensional metrics. Therefore, in this paper, we analyze three dimensional characteristics (structure-based, information-based, and action-based factors) to develop the multidimensional social influence (MSI) measurement approach. With topic distillation and conditional expectation, the MSI approach can not only measure users topic-level influence, but also measure users global-level influence. Based on data collected from SinaWeibo.com, the experimental results show that the proposed framework outperforms two traditional methods (LeaderRank and FBI) both on the topic-level and the global-level. The proposed framework can be effectively applied to promote word-of-mouth marketing, and to steer public opinion in certain directions, even to support decisions during a negotiation process.

摘要

在线社交网络具有异质性,其中节点在结构和功能方面发挥着截然不同的作用。因此,识别有影响力的人非常重要,这使我们能够控制负面舆论的爆发、进行电子商务产品的广告宣传、预测热门科学出版物等等。有影响力的人的识别吸引了计算机科学和传播学越来越多的关注,有从基于结构到基于信息和基于行动的多维度指标。然而,大多数工作仅仅依赖于单维度指标。因此,在本文中,我们分析三维特征(基于结构、基于信息和基于行动的因素)来开发多维度社会影响力(MSI)测量方法。通过主题提炼和条件期望,MSI方法不仅可以衡量用户的主题级影响力,还可以衡量用户的全局级影响力。基于从新浪微博收集的数据,实验结果表明,所提出的框架在主题级和全局级上均优于两种传统方法(LeaderRank和FBI)。所提出的框架可以有效地应用于促进口碑营销、引导舆论朝着特定方向发展,甚至在谈判过程中支持决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8179/8060605/8519faddfa29/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验