Liu Jian-Guo, Lin Jian-Hong, Guo Qiang, Zhou Tao
Data Science and Cloud Service Centre, Shanghai University of Finance and Economics, Shanghai 200433, PR China.
Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
Sci Rep. 2016 Feb 24;6:21380. doi: 10.1038/srep21380.
With great theoretical and practical significance, locating influential nodes of complex networks is a promising issue. In this paper, we present a dynamics-sensitive (DS) centrality by integrating topological features and dynamical properties. The DS centrality can be directly applied in locating influential spreaders. According to the empirical results on four real networks for both susceptible-infected-recovered (SIR) and susceptible-infected (SI) spreading models, the DS centrality is more accurate than degree, k-shell index and eigenvector centrality.
定位复杂网络中的有影响力节点具有重大的理论和实际意义,是一个很有前景的问题。在本文中,我们通过整合拓扑特征和动力学性质提出了一种动力学敏感(DS)中心性。DS中心性可直接应用于定位有影响力的传播者。根据针对易感-感染-恢复(SIR)和易感-感染(SI)传播模型在四个真实网络上的实证结果,DS中心性比度、k-壳指数和特征向量中心性更准确。