Suppr超能文献

深度学习助力无标记芯片内检测和选择性提取载细胞聚集体水凝胶微胶囊。

Deep Learning-Enabled Label-Free On-Chip Detection and Selective Extraction of Cell Aggregate-Laden Hydrogel Microcapsules.

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.

Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA.

出版信息

Small. 2021 Jun;17(23):e2100491. doi: 10.1002/smll.202100491. Epub 2021 Apr 25.

Abstract

Microfluidic encapsulation of cells/tissues in hydrogel microcapsules has attracted tremendous attention in the burgeoning field of cell-based medicine. However, when encapsulating rare cells and tissues (e.g., pancreatic islets and ovarian follicles), the majority of the resultant hydrogel microcapsules are empty and should be excluded from the sample. Furthermore, the cell-laden hydrogel microcapsules are usually suspended in an oil phase after microfluidic generation, while the microencapsulated cells require an aqueous phase for further culture/transplantation and long-term suspension in oil may compromise the cells/tissues. Thus, real-time on-chip selective extraction of cell-laden hydrogel microcapsules from oil into aqueous phase is crucial to the further use of the microencapsulated cells/tissues. Contemporary extraction methods either require labeling of cells for their identification along with an expensive detection system or have a low extraction purity (<≈30%). Here, a deep learning-enabled approach for label-free detection and selective extraction of cell-laden microcapsules with high efficiency of detection (≈100%) and extraction (≈97%), high purity of extraction (≈90%), and high cell viability (>95%) is reported. The utilization of deep learning to dynamically analyze images in real time for label-free detection and on-chip selective extraction of cell-laden hydrogel microcapsules is unique and may be valuable to advance the emerging cell-based medicine.

摘要

微流控技术将细胞/组织包封在水凝胶微胶囊中,在新兴的基于细胞的医学领域引起了极大的关注。然而,当包封稀有细胞和组织(例如胰岛和卵巢滤泡)时,大多数所得水凝胶微胶囊是空心的,应将其从样本中排除。此外,微流控生成后,载细胞的水凝胶微胶囊通常悬浮在油相中,而微囊化的细胞需要水相进行进一步培养/移植,并且在油中长期悬浮可能会损害细胞/组织。因此,实时在芯片上将载细胞的水凝胶微胶囊从油相中选择性地提取到水相对于进一步使用微囊化的细胞/组织至关重要。目前的提取方法要么需要对细胞进行标记以进行识别,同时需要昂贵的检测系统,要么提取纯度低(<≈30%)。在这里,报告了一种基于深度学习的无标记检测和高效(检测≈100%,提取≈97%)、高纯度(提取≈90%)和高细胞活力(>95%)的载细胞微胶囊的选择性提取方法。利用深度学习实时动态分析图像进行无标记检测和载细胞水凝胶微胶囊的芯片上选择性提取是独特的,可能对推进新兴的基于细胞的医学具有重要价值。

相似文献

10
All-Aqueous-Phase Microfluidics for Cell Encapsulation.水相微流控技术用于细胞包封。
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):4826-4832. doi: 10.1021/acsami.8b19234. Epub 2019 Jan 23.

引用本文的文献

3
Towards single cell encapsulation for precision biology and medicine.单细胞包封用于精准生物学和医学。
Adv Drug Deliv Rev. 2023 Oct;201:115010. doi: 10.1016/j.addr.2023.115010. Epub 2023 Jul 16.
8

本文引用的文献

1
Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy.工程策略改善胰岛移植治疗 1 型糖尿病。
ACS Biomater Sci Eng. 2020 May 11;6(5):2543-2562. doi: 10.1021/acsbiomaterials.9b01406. Epub 2019 Dec 2.
4
Deep learning for biology.用于生物学的深度学习。
Nature. 2018 Feb;554(7693):555-557. doi: 10.1038/d41586-018-02174-z.
9
Analyzing complex single-molecule emission patterns with deep learning.深度学习分析复杂单分子发射模式。
Nat Methods. 2018 Nov;15(11):913-916. doi: 10.1038/s41592-018-0153-5. Epub 2018 Oct 30.
10
Machine Learning and Health Care Disparities in Dermatology.皮肤病学中的机器学习与医疗保健差异
JAMA Dermatol. 2018 Nov 1;154(11):1247-1248. doi: 10.1001/jamadermatol.2018.2348.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验