Zhang Shi-Qing, Cao Shan-Shan, Hu Li-Ting, Cai Chao-Lin, Tu Yue, Liu Min
School of Ecological and Environment Sciences, East China Normal University, Shanghai 200241, China.
Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
Ying Yong Sheng Tai Xue Bao. 2021 Apr;32(4):1406-1416. doi: 10.13287/j.1001-9332.202104.013.
Based on the ground-based observations from seven atmospheric background stations during 2009 to 2018 in monsoon Asia (including BKT station in Indonesia, LLN and WLG stations in China, RYO and YON stations in Japan, TAP station in Republic of Korea, and UUM station in Mongolia), we analyzed the temporal and spatial variation of atmospheric CH concentration and its driving factors using harmonic model and maximal information-based nonparametric exploration. The results showed that the CH concentration in monsoon Asia varied from 1853.04 to 1935.61 nmol·mol, higher than that in Mauna Loa (MLO) station (1838.33 nmol·mol) in Hawaii, USA. The CH concentration decreased from north to south, with the highest value in TAP station (1935.61 nmol·mol) in Republic of Korea and RYO station (1907.19 nmol·mol) in Japan. The average seasonal amplitude at YON station in Japan was the largest (108.20 nmol·mol); while that at WLG station in China was the smallest (29.48 nmol·mol). The seasonal amplitude of TAP station in Republic of Korea changed faster at the rate of 4.49 nmol·mol·a. Except for WLG and TAP stations, CH concentrations were low in summer and high in winter. From the long-term perspective, the CH concentration at LLN (7.68 nmol·mol·a) and WLG (7.56 nmol·mol·a) stations in China exhibited the most obvious growth trend. Compared with wind speed, temperature and precipitation had greater impact on CH concentration, which were negatively associated with CH concentration. Local CH emission at some stations had a significant positive effect on CH concentration.
基于2009年至2018年期间在亚洲季风区七个大气背景站(包括印度尼西亚的BKT站、中国的LLN站和WLG站、日本的RYO站和YON站、韩国的TAP站以及蒙古的UUM站)的地面观测数据,我们使用谐波模型和基于最大信息的非参数探索方法,分析了大气CH浓度的时空变化及其驱动因素。结果表明,亚洲季风区的CH浓度在1853.04至1935.61 nmol·mol之间变化,高于美国夏威夷莫纳罗亚(MLO)站的浓度(1838.33 nmol·mol)。CH浓度从北向南递减,韩国的TAP站(1935.61 nmol·mol)和日本的RYO站(1907.19 nmol·mol)浓度最高。日本YON站的平均季节振幅最大(108.20 nmol·mol);而中国WLG站的平均季节振幅最小(29.48 nmol·mol)。韩国TAP站的季节振幅变化速度最快,为4.49 nmol·mol·a。除WLG站和TAP站外,CH浓度夏季低冬季高。从长期来看,中国LLN站(7.68 nmol·mol·a)和WLG站(7.56 nmol·mol·a)的CH浓度呈现出最明显的增长趋势。与风速相比,温度和降水对CH浓度的影响更大,且与CH浓度呈负相关。一些站点的本地CH排放对CH浓度有显著的正影响。