Suppr超能文献

通过简便的电合成构建超薄W掺杂NiFe纳米片作为高效析水的双功能电催化剂。

Constructing Ultrathin W-Doped NiFe Nanosheets via Facile Electrosynthesis as Bifunctional Electrocatalysts for Efficient Water Splitting.

作者信息

Ding Lei, Li Kui, Xie Zhiqiang, Yang Gaoqiang, Yu Shule, Wang Weitian, Yu Haoran, Baxter Jefferey, Meyer Harry M, Cullen David A, Zhang Feng-Yuan

机构信息

Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States.

Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

出版信息

ACS Appl Mater Interfaces. 2021 May 5;13(17):20070-20080. doi: 10.1021/acsami.1c01815. Epub 2021 Apr 26.

Abstract

Exploring cost-effective and efficient bifunctional electrocatalysts via simple fabrication strategies is strongly desired for practical water splitting. Herein, an easy and fast one-step electrodeposition process is developed to fabricate W-doped NiFe (NiFeW)-layered double hydroxides with ultrathin nanosheet features at room temperature and ambient pressure as bifunctional catalysts for water splitting. Notably, the NiFeW nanosheets require overpotentials of only 239 and 115 mV for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, to reach a current density of 10 mA/cm in alkaline media. Their exceptional performance is further demonstrated in a full electrolyzer configuration with the NiFeW as both anode and cathode catalysts, which achieves a low cell voltage of 1.59 V at 10 mA/cm, 110 mV lower than that of the commercial IrO (anode) and Pt (cathode) catalysts. Moreover, the NiFeW nanosheets are superior to various recently reported bifunctional electrocatalysts. Such remarkable performances mainly ascribe to W doping, which not only effectively modulates the electrocatalyst morphology but also engineers the electronic structure of NiFe hydroxides to boost charge-transfer kinetics for both the OER and HER. Hence, the ultrathin NiFeW nanosheets with an efficient fabrication strategy are promising as bifunctional electrodes for alkaline water electrolyzers.

摘要

通过简单的制备策略探索具有成本效益和高效的双功能电催化剂对于实际的水分解至关重要。在此,开发了一种简单快速的一步电沉积工艺,在室温和常压下制备具有超薄纳米片特征的W掺杂NiFe(NiFeW)层状双氢氧化物,作为水分解的双功能催化剂。值得注意的是,在碱性介质中,NiFeW纳米片在析氧反应(OER)和析氢反应(HER)中分别仅需239和115 mV的过电位即可达到10 mA/cm的电流密度。在以NiFeW作为阳极和阴极催化剂的全电解槽配置中进一步证明了它们的优异性能,该配置在10 mA/cm时实现了1.59 V的低电池电压,比商业IrO(阳极)和Pt(阴极)催化剂低110 mV。此外,NiFeW纳米片优于最近报道的各种双功能电催化剂。如此卓越的性能主要归因于W掺杂,它不仅有效地调节了电催化剂的形态,还优化了NiFe氢氧化物的电子结构,以促进OER和HER的电荷转移动力学。因此,具有高效制备策略的超薄NiFeW纳米片有望作为碱性水电解槽的双功能电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验