Suppr超能文献

一种稳健的方法,可在中国范围内推导出长期的每日地面 NO 水平:对反推中大量估计偏差的修正。

A robust approach to deriving long-term daily surface NO levels across China: Correction to substantial estimation bias in back-extrapolation.

机构信息

Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.

Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610200, China.

出版信息

Environ Int. 2021 Sep;154:106576. doi: 10.1016/j.envint.2021.106576. Epub 2021 Apr 23.

Abstract

BACKGROUND

Long-term surface NO data are essential for retrospective policy evaluation and chronic human exposure assessment. In the absence of NO observations for Mainland China before 2013, training a model with 2013-2018 data to make predictions for 2005-2012 (back-extrapolation) could cause substantial estimation bias due to concept drift.

OBJECTIVE

This study aims to correct the estimation bias in order to reconstruct the spatiotemporal distribution of daily surface NO levels across China during 2005-2018.

METHODS

On the basis of ground- and satellite-based data, we proposed the robust back-extrapolation with a random forest (RBE-RF) to simulate the surface NO through intermediate modeling of the scaling factors. For comparison purposes, we also employed a random forest (Base-RF), as a representative of the commonly used approach, to directly model the surface NO levels.

RESULTS

The validation against Taiwan's NO observations during 2005-2012 showed that RBE-RF adequately corrected the substantial underestimation by Base-RF. The RMSE decreased from 10.1 to 8.2 µg/m, 7.1 to 4.3 µg/m, and 6.1 to 2.9 µg/m in predicting daily, monthly, and annual levels, respectively. For North China with the most severe pollution, the population-weighted NO ([NO]) during 2005-2012 was estimated as 40.2 and 50.9 µg/m by Base-RF and RBE-RF, respectively, i.e., 21.0% difference. While both models predicted that the national annual [NO] increased during 2005-2011 and then decreased, the interannual trends were underestimated by >50.2% by Base-RF relative to RBE-RF. During 2005-2018, the nationwide population that lived in the areas with NO > 40 µg/m were estimated as 259 and 460 million by Base-RF and RBE-RF, respectively.

CONCLUSION

With RBE-RF, we corrected the estimation bias in back-extrapolation and obtained a full-coverage dataset of daily surface NO across China during 2005-2018, which is valuable for environmental management and epidemiological research.

摘要

背景

长期的地表 NO 数据对于回顾性政策评估和慢性人体暴露评估至关重要。由于概念漂移,在中国内地 2013 年以前没有 NO 观测数据的情况下,使用 2013-2018 年的数据训练模型进行 2005-2012 年的预测(回溯外推)可能会导致大量的估计偏差。

目的

本研究旨在纠正估计偏差,以重建 2005-2018 年中国地表 NO 水平的时空分布。

方法

基于地面和卫星数据,我们提出了稳健的回溯外推随机森林(RBE-RF)方法,通过中间尺度因子建模来模拟地表 NO。为了比较目的,我们还采用了随机森林(Base-RF),作为常用方法的代表,直接对地表 NO 水平进行建模。

结果

与 2005-2012 年台湾的 NO 观测值进行验证表明,RBE-RF 充分纠正了 Base-RF 的显著低估。在预测日、月和年水平时,RMSE 分别从 10.1 降至 8.2μg/m、7.1 降至 4.3μg/m 和 6.1 降至 2.9μg/m。对于污染最严重的华北地区,Base-RF 和 RBE-RF 分别估计 2005-2012 年的人口加权 NO([NO])为 40.2 和 50.9μg/m,即存在 21.0%的差异。虽然两个模型都预测 2005-2011 年期间全国年[NO]增加,然后减少,但与 RBE-RF 相比,Base-RF 对年际趋势的低估超过 50.2%。2005-2018 年,Base-RF 和 RBE-RF 分别估计生活在 NO>40μg/m 地区的全国人口为 2.59 亿和 4.60 亿。

结论

通过 RBE-RF,我们纠正了回溯外推中的估计偏差,获得了 2005-2018 年中国地表 NO 的全覆盖数据集,这对环境管理和流行病学研究具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验