Suppr超能文献

利用集合算法绘制中国大陆高分辨率全国日 NO 暴露图。

Mapping high resolution national daily NO exposure across mainland China using an ensemble algorithm.

机构信息

Laboratory of Environmental Model and Data Optima (EMDO), Laurel, MD, 20707, USA.

出版信息

Environ Pollut. 2021 Jun 15;279:116932. doi: 10.1016/j.envpol.2021.116932. Epub 2021 Mar 11.

Abstract

Nitrogen dioxide (NO) is an important air pollutant and highly related to air quality, short- and long-term health effects, and even climate. A national model was developed using the extreme gradient boosting algorithm with high-resolution tropospheric vertical column NO densities from the Sentinel-5 Precursor/Tropospheric Monitoring Instrument and general meteorological variables as input to generate daily mean surface NO concentrations across mainland China. Model-derived daily NO estimates were high accuracy with sample-based cross-validation coefficient of determination of 0.83, a root-mean-square error of 7.58 μg/m, a mean prediction error of 5.56 μg/m, and a mean relative prediction error of 18.08%. It has good performance in NO estimations at both regional and individual site scale. The model also performed well in terms of estimating monthly, seasonal, and annual mean NO concentrations across China. The model performance appears to better than or comparable to most previous related studies. The seasonal and annual spatial distributions of surface NO across China and several regional NO hotspots in 2019 were derived from the model and analyzed. Also evaluated were the population exposure levels of NO for cities in and provinces of China. At the national scale, about 12% of the population experienced annual mean NO concentrations exceeding the Chinese national air quality standard. The nationwide model with conventional predictors developed here can derive high-resolution surface NO concentrations across China routinely, benefitting air epidemiological and environmental related studies.

摘要

二氧化氮(NO)是一种重要的空气污染物,与空气质量、短期和长期健康影响甚至气候密切相关。本研究利用极端梯度提升算法,以 Sentinel-5 前哨/Tropospheric 监测仪提供的高分辨率对流层垂直柱 NO 密度和一般气象变量作为输入,建立了一个全国性模型,以生成中国大陆的日平均地表 NO 浓度。基于样本的交叉验证决定系数为 0.83,均方根误差为 7.58μg/m,平均预测误差为 5.56μg/m,平均相对预测误差为 18.08%,模型衍生的每日 NO 估算具有较高的准确性。该模型在区域和个别站点尺度上的 NO 估算中均具有良好的性能。该模型在估算中国全国范围内的月、季和年平均 NO 浓度方面也表现良好。模型性能似乎优于或可与大多数先前的相关研究相媲美。本研究从模型中得出了 2019 年中国各地表 NO 的季节性和年际空间分布情况,并分析了几个区域的 NO 热点。还评估了中国城市和省份的 NO 人口暴露水平。在全国范围内,约有 12%的人口经历了年平均 NO 浓度超过中国国家空气质量标准的情况。本研究中开发的具有常规预测因子的全国性模型可以常规地推导出中国的高分辨率地表 NO 浓度,有利于空气流行病学和环境相关研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验