Bakoa Florian, Préhaud Christophe, Beauclair Guillaume, Chazal Maxime, Mantel Nathalie, Lafon Monique, Jouvenet Nolwenn
Unité de Neuroimmunologie Virale, Institut Pasteur, Paris, France.
Research and External Innovation Department, Sanofi Pasteur, Marcy L'Etoile, France.
NPJ Vaccines. 2021 Apr 26;6(1):64. doi: 10.1038/s41541-021-00318-3.
Mass vaccination with the live attenuated vaccine YF-17D is the current way to prevent infection with Yellow fever virus (YFV). However, 0.000012-0.00002% of vaccinated patients develop post-vaccination neurological syndrome (YEL-AND). Understanding the factors responsible for neuroinvasion, neurotropism, and neurovirulence of the vaccine is critical for improving its biosafety. The YF-FNV vaccine strain, known to be associated with a higher frequency of YEL-AND (0.3-0.4%) than YF-17D, is an excellent model to study vaccine neuroinvasiveness. We determined that neuroinvasiveness of YF-FNV occured both via infection and passage through human brain endothelial cells. Plaque purification and next generation sequencing (NGS) identified several neuroinvasive variants. Their neuroinvasiveness was not higher than that of YF-FNV. However, rebuilding the YF-FNV population diversity from a set of isolated YF-FNV-N variants restored the original neuroinvasive phenotype of YF-FNV. Therefore, we conclude that viral population diversity is a critical factor for YFV vaccine neuroinvasiveness.
使用减毒活疫苗YF-17D进行大规模接种是目前预防黄热病病毒(YFV)感染的方法。然而,0.000012 - 0.00002%的接种患者会出现接种后神经综合征(YEL-AND)。了解导致疫苗神经侵袭、嗜神经性和神经毒性的因素对于提高其生物安全性至关重要。已知YF-FNV疫苗株与YEL-AND的发生率(0.3 - 0.4%)高于YF-17D,是研究疫苗神经侵袭性的理想模型。我们确定YF-FNV的神经侵袭性是通过感染和穿过人脑内皮细胞发生的。蚀斑纯化和下一代测序(NGS)鉴定出了几种神经侵袭性变体。它们的神经侵袭性并不高于YF-FNV。然而,从一组分离的YF-FNV-N变体重建YF-FNV群体多样性可恢复YF-FNV的原始神经侵袭表型。因此,我们得出结论,病毒群体多样性是YFV疫苗神经侵袭性的关键因素。