Suppr超能文献

使用卡尔曼滤波器快速稳健地进行手术器械定位。

Fast and robust localization of surgical array using Kalman filter.

机构信息

Department of Electrical and Computer Engineering, Concordia University, 1455 boul. De Maisonneuve O, Montreal Quebec, H3G 1M8, Canada.

Advanced Products, THINK Surgical, 5th Floor - 1275 Avenue Des Canadiens de Montreal, Montreal, Quebec, H3B 0G4, Canada.

出版信息

Int J Comput Assist Radiol Surg. 2021 May;16(5):829-837. doi: 10.1007/s11548-021-02378-1. Epub 2021 Apr 26.

Abstract

PROBLEM

Intraoperative tracking of surgical instruments is an inevitable task of computer-assisted surgery. An optical tracking system often fails to precisely reconstruct the dynamic location and pose of a surgical tool due to the acquisition noise and measurement variance. Embedding a Kalman filter (KF) or any of its extensions such as extended and unscented Kalman filters (EKF and UKF) with the optical tracker resolves this issue by reducing the estimation variance and regularizing the temporal behavior. However, the current KF implementations are computationally burdensome and hence takes long execution time which hinders real-time surgical tracking.

AIM

This paper introduces a fast and computationally efficient implementation of linear KF to improve the measurement accuracy of an optical tracking system with high temporal resolution.

METHODS

Instead of the surgical tool as a whole, our KF framework tracks each individual fiducial mounted on it using a Newtonian model. In addition to simulated dataset, we validate our technique against real data obtained from a high frame-rate commercial optical tracking system. We also perform experiments wherein a diffusive material (such as a drop of blood) blocks one of the fiducials and show that KF can substantially reduce the tracking error.

RESULTS

The proposed KF framework substantially stabilizes the tracking behavior in all of our experiments and reduces the mean-squared error (MSE) by a factor of 26.84, from the order of [Formula: see text] to [Formula: see text] mm[Formula: see text]. In addition, it exhibits a similar performance to UKF, but with a much smaller computational complexity.

摘要

问题

手术器械的术中跟踪是计算机辅助手术的一项必不可少的任务。由于采集噪声和测量方差的影响,光学跟踪系统往往无法精确重建手术工具的动态位置和姿态。通过在光学跟踪器中嵌入卡尔曼滤波器(KF)或其扩展,如扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF),可以解决这个问题,方法是减小估计方差并使时间行为正则化。然而,当前的 KF 实现计算量很大,因此执行时间很长,从而阻碍了实时手术跟踪。

目的

本文介绍了一种快速且计算效率高的线性 KF 实现方法,以提高具有高时间分辨率的光学跟踪系统的测量精度。

方法

我们的 KF 框架不是跟踪整个手术工具,而是使用牛顿模型跟踪安装在手术工具上的每个单独的基准标记。除了模拟数据集外,我们还使用来自高帧率商业光学跟踪系统的实际数据来验证我们的技术。我们还进行了实验,其中一个扩散材料(如一滴血)会挡住一个基准标记,并表明 KF 可以大大减少跟踪误差。

结果

在所进行的所有实验中,所提出的 KF 框架都极大地稳定了跟踪行为,并将均方根误差(MSE)降低了 26.84 倍,从[Formula: see text]量级降低到[Formula: see text]毫米[Formula: see text]。此外,它的性能与 UKF 相似,但计算复杂度要小得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验