Suppr超能文献

多枚导弹传感器的改进空间配准与目标跟踪方法。

Improved Spatial Registration and Target Tracking Method for Sensors on Multiple Missiles.

机构信息

Institute of Precision Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Sensors (Basel). 2018 May 27;18(6):1723. doi: 10.3390/s18061723.

Abstract

Inspired by the problem that the current spatial registration methods are unsuitable for three-dimensional (3-D) sensor on high-dynamic platform, this paper focuses on the estimation for the registration errors of cooperative missiles and motion states of maneuvering target. There are two types of errors being discussed: sensor measurement biases and attitude biases. Firstly, an improved Kalman Filter on Earth-Centered Earth-Fixed (ECEF-KF) coordinate algorithm is proposed to estimate the deviations mentioned above, from which the outcomes are furtherly compensated to the error terms. Secondly, the Pseudo Linear Kalman Filter (PLKF) and the nonlinear scheme the Unscented Kalman Filter (UKF) with modified inputs are employed for target tracking. The convergence of filtering results are monitored by a position-judgement logic, and a low-pass first order filter is selectively introduced before compensation to inhibit the jitter of estimations. In the simulation, the ECEF-KF enhancement is proven to improve the accuracy and robustness of the space alignment, while the conditional-compensation-based PLKF method is demonstrated to be the optimal performance in target tracking.

摘要

受当前空间配准方法不适用于高动态平台上的三维(3-D)传感器这一问题的启发,本文专注于协同导弹的配准误差和机动目标的运动状态的估计。讨论了两种类型的误差:传感器测量偏差和姿态偏差。首先,提出了一种改进的地心惯性坐标系(ECEF)卡尔曼滤波(ECEF-KF)算法,用于估计上述偏差,然后进一步将结果补偿到误差项中。其次,采用伪线性卡尔曼滤波(PLKF)和带有改进输入的非线性方案的无迹卡尔曼滤波(UKF)进行目标跟踪。通过位置判断逻辑来监控滤波结果的收敛性,并在补偿前选择性地引入一阶低通滤波器,以抑制估计的抖动。在仿真中,证明了 ECEF-KF 的增强可以提高空间对准的准确性和鲁棒性,而基于条件补偿的 PLKF 方法在目标跟踪中表现出最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de00/6021801/f4b2268cec9c/sensors-18-01723-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验