Suppr超能文献

利用富含植物多糖的胶原支架进行软骨组织工程

Tissue Engineering of Cartilage Using Collagen Scaffold Enriched with Plant Polysaccharides.

机构信息

CSIR Centre for Cellular and Molecular Biology, Hyderabad, India.

出版信息

Cartilage. 2021 Dec;13(2_suppl):650S-662S. doi: 10.1177/19476035211007899. Epub 2021 Apr 27.

Abstract

Degenerative diseases associated with articular cartilage pose a huge burden on health care economics. The nature of the tissue involved and the changes therein do not allow self-healing; and most of these problems are progressive. Tissue engineering offers some solutions provided we focus on the right kind of cells and the appropriate surrounding niches created for a particular tissue. The present study deals with the formation of polysaccharide rich stable scaffold of collagen after cross-linking with oxidized gum arabic. The scaffold was tested for its biocompatibility and ability to support cells. The cytotoxicity of the scaffolds toward induced pluripotent stem cells and chondrocytes was evaluated. Evaluation of expression of lineage specific markers indicates differentiation of induced pluripotent stem cells to chondrogenic lineage and maintenance of chondrocytes per se when grown in the scaffold. Animal studies were carried out to study the efficacy of the scaffold to repair the knee injuries. Cells along with the scaffold appeared to be the best filling, in repair of injured cartilage. These studies show that these scaffolds are potential candidates in applications such as tissue engineering of cartilage.

摘要

与关节软骨相关的退行性疾病给医疗保健经济带来了巨大负担。所涉及的组织的性质及其变化不允许自我修复;而且大多数这些问题都是进行性的。组织工程学提供了一些解决方案,只要我们专注于正确的细胞类型和为特定组织创建的适当周围小生境。本研究涉及用氧化阿拉伯胶交联后形成富含多糖的稳定胶原支架。对支架的生物相容性和支持细胞的能力进行了测试。评估了支架对诱导多能干细胞和成软骨细胞的细胞毒性。对谱系特异性标志物表达的评估表明,诱导多能干细胞向软骨谱系分化,并且当在支架中生长时,成软骨细胞本身得到维持。进行了动物研究以研究支架修复膝关节损伤的功效。在修复受损软骨方面,细胞和支架似乎是最好的填充材料。这些研究表明,这些支架是软骨组织工程等应用中的潜在候选者。

相似文献

1
Tissue Engineering of Cartilage Using Collagen Scaffold Enriched with Plant Polysaccharides.
Cartilage. 2021 Dec;13(2_suppl):650S-662S. doi: 10.1177/19476035211007899. Epub 2021 Apr 27.
3
Tissue engineering of collagen scaffolds crosslinked with plant based polysaccharides.
Prog Biomater. 2021 Mar;10(1):29-41. doi: 10.1007/s40204-021-00149-4. Epub 2021 Feb 18.
5
Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform.
Acta Biomater. 2016 Apr 15;35:87-97. doi: 10.1016/j.actbio.2016.02.026. Epub 2016 Feb 18.
7
Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering.
Acta Biomater. 2020 Jan 15;102:192-204. doi: 10.1016/j.actbio.2019.11.041. Epub 2019 Nov 26.
8
Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
Osteoarthritis Cartilage. 2013 Dec;21(12):1997-2005. doi: 10.1016/j.joca.2013.09.007. Epub 2013 Oct 2.
9
Decellularized sturgeon cartilage extracellular matrix scaffold inhibits chondrocyte hypertrophy in vitro and in vivo.
J Tissue Eng Regen Med. 2021 Aug;15(8):732-744. doi: 10.1002/term.3222. Epub 2021 Jun 1.
10
Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.
Tissue Eng Part A. 2017 Jan;23(1-2):55-68. doi: 10.1089/ten.TEA.2016.0055. Epub 2016 Nov 22.

引用本文的文献

1
Gums as Macromolecular Crowding Agents in Human Skin Fibroblast Cultures.
Life (Basel). 2024 Mar 25;14(4):435. doi: 10.3390/life14040435.
2
Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering.
Front Bioeng Biotechnol. 2022 Jun 30;10:897010. doi: 10.3389/fbioe.2022.897010. eCollection 2022.

本文引用的文献

1
Generation of iPSC from fetal fibroblast cells obtained from an abortus with type-I tri-allelic variants.
Stem Cell Res. 2020 Oct;48:101963. doi: 10.1016/j.scr.2020.101963. Epub 2020 Aug 27.
2
Simple and Robust Differentiation of Human Pluripotent Stem Cells toward Chondrocytes by Two Small-Molecule Compounds.
Stem Cell Reports. 2019 Sep 10;13(3):530-544. doi: 10.1016/j.stemcr.2019.07.012. Epub 2019 Aug 8.
3
Chondrogenic Differentiation of Pluripotent Stem Cells under Controllable Serum-Free Conditions.
Int J Mol Sci. 2019 Jun 2;20(11):2711. doi: 10.3390/ijms20112711.
4
Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis.
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1710-1721. doi: 10.1080/21691401.2019.1607866.
5
Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation.
Front Surg. 2018 Nov 27;5:70. doi: 10.3389/fsurg.2018.00070. eCollection 2018.
6
Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A.
Mol Med Rep. 2017 May;15(5):2387-2401. doi: 10.3892/mmr.2017.6334. Epub 2017 Mar 16.
7
Should we use cells, biomaterials, or tissue engineering for cartilage regeneration?
Stem Cell Res Ther. 2016 Apr 18;7(1):56. doi: 10.1186/s13287-016-0314-3.
9
Proteoglycan form and function: A comprehensive nomenclature of proteoglycans.
Matrix Biol. 2015 Mar;42:11-55. doi: 10.1016/j.matbio.2015.02.003. Epub 2015 Feb 18.
10
Polysaccharide-based strategies for heart tissue engineering.
Carbohydr Polym. 2015 Feb 13;116:267-77. doi: 10.1016/j.carbpol.2014.06.010. Epub 2014 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验