Suppr超能文献

基于深度学习和传统方法的智能环境增强型多模态生物识别系统。

Enhanced multimodal biometric recognition systems based on deep learning and traditional methods in smart environments.

机构信息

Department of Electrical Engineering, Faculty of Engineering-Shoubra, Benha University, Cairo, Egypt.

Information Systems Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2024 Feb 15;19(2):e0291084. doi: 10.1371/journal.pone.0291084. eCollection 2024.

Abstract

In the field of data security, biometric security is a significant emerging concern. The multimodal biometrics system with enhanced accuracy and detection rate for smart environments is still a significant challenge. The fusion of an electrocardiogram (ECG) signal with a fingerprint is an effective multimodal recognition system. In this work, unimodal and multimodal biometric systems using Convolutional Neural Network (CNN) are conducted and compared with traditional methods using different levels of fusion of fingerprint and ECG signal. This study is concerned with the evaluation of the effectiveness of proposed parallel and sequential multimodal biometric systems with various feature extraction and classification methods. Additionally, the performance of unimodal biometrics of ECG and fingerprint utilizing deep learning and traditional classification technique is examined. The suggested biometric systems were evaluated utilizing ECG (MIT-BIH) and fingerprint (FVC2004) databases. Additional tests are conducted to examine the suggested models with:1) virtual dataset without augmentation (ODB) and 2) virtual dataset with augmentation (VDB). The findings show that the optimum performance of the parallel multimodal achieved 0.96 Area Under the ROC Curve (AUC) and sequential multimodal achieved 0.99 AUC, in comparison to unimodal biometrics which achieved 0.87 and 0.99 AUCs, for the fingerprint and ECG biometrics, respectively. The overall performance of the proposed multimodal biometrics outperformed unimodal biometrics using CNN. Moreover, the performance of the suggested CNN model for ECG signal and sequential multimodal system based on neural network outperformed other systems. Lastly, the performance of the proposed systems is compared with previously existing works.

摘要

在数据安全领域,生物识别安全是一个新兴的重要关注点。在智能环境中,具有更高准确性和检测率的多模态生物识别系统仍然是一个重大挑战。将心电图 (ECG) 信号与指纹融合是一种有效的多模态识别系统。在这项工作中,使用卷积神经网络 (CNN) 进行了单模态和多模态生物识别系统的研究,并与使用不同程度的指纹和 ECG 信号融合的传统方法进行了比较。本研究关注评估使用各种特征提取和分类方法的并行和顺序多模态生物识别系统的有效性。此外,还研究了利用深度学习和传统分类技术的 ECG 和指纹单模态生物识别的性能。使用 ECG(MIT-BIH)和指纹(FVC2004)数据库评估了所提出的生物识别系统。此外,还进行了额外的测试,以检查所提出的模型与以下内容的兼容性:1)无扩充的虚拟数据集 (ODB) 和 2)具有扩充的虚拟数据集 (VDB)。研究结果表明,与单模态生物识别相比,并行多模态的最佳性能达到了 0.96 的 ROC 曲线下面积 (AUC),而顺序多模态的最佳性能达到了 0.99 AUC,对于指纹和 ECG 生物识别,分别为 0.87 和 0.99 AUC。与使用 CNN 的单模态生物识别相比,所提出的多模态生物识别的整体性能更好。此外,基于神经网络的 ECG 信号和顺序多模态系统的建议 CNN 模型的性能优于其他系统。最后,将所提出的系统的性能与以前的现有工作进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86a8/10868857/d453c16f3ca3/pone.0291084.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验