Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
J Anim Ecol. 2021 Aug;90(8):1906-1918. doi: 10.1111/1365-2656.13509. Epub 2021 May 20.
The variation of assemblage composition in space is characterised by the decrease in assemblage similarity with spatial distance. Climatic constraint and dispersal limitation are major drivers of distance-decay of similarity. Distance-decay of similarity is usually conceptualised and modelled as an isotropic pattern, that is, assuming that similarity decays with the same rate in all directions. Because climatic gradients are markedly anisotropic, that is, they have different strength in different directions, if species distributions were in equilibrium with climate, the decay of assemblage similarity should be anisotropic in the same direction as the climatic gradient, that is, faster turnover in the direction that maximises the climatic gradient. Thus, deviations from equilibrium between assemblage composition and climatic conditions would result in differences in anisotropy between distance-decay of similarity and climatic gradients. We assessed anisotropy in distance-decay patterns in marine plankton assemblages, terrestrial vertebrates and European beetles, using two procedures: (a) measuring the correlation between the residuals of a distance-decay model and the angle in which pairs of sites are separated and (b) computing two separate distance-decay models for each dataset, one using only pairwise cases that are separated on North-South direction and another one using pairwise cases separated on East-West direction. We also analysed whether the degree of anisotropy in distance-decay is related to dispersal ability (proportion of wingless species and body size) and ecological niche characteristics (main habitat and trophic position) by assessing these relationships among beetle taxonomic groups (n = 21). Anisotropy varied markedly across realms and biological groups. Despite climatic gradients being steeper in North-South direction than in East-West direction in all datasets, North-South distance-decays tended to be steeper than East-West distance-decays in plankton and most vertebrate assemblages, but flatter in European amphibians and most beetle groups. Anisotropy also markedly varied across beetle groups depending on their dispersal ability, as the proportion of wingless species explained 60% of the variance in the difference between North-South and East-West distance-decay slopes. Our results suggest that the degree of equilibrium decreases from marine to terrestrial realms, and is markedly different between vertebrates and beetles. This has profound implications on the expected ability of different groups to track their suitable climates, and thus on the impact of climate change on biodiversity.
群落组成在空间上的变化特征是随着空间距离的增加,群落相似性降低。气候约束和扩散限制是导致相似性随距离衰减的主要驱动因素。相似性随距离衰减通常被概念化为各向同性模式,即假设相似性以相同的速率在所有方向上衰减。由于气候梯度明显是各向异性的,也就是说,它们在不同方向上的强度不同,如果物种分布与气候达到平衡,那么群落相似性的衰减在与气候梯度相同的方向上应该是各向异性的,也就是说,在最大程度上气候梯度的方向上,周转率更快。因此,群落组成与气候条件之间的平衡偏离会导致相似性随距离衰减与气候梯度之间的各向异性差异。我们使用两种方法评估海洋浮游生物群落、陆地脊椎动物和欧洲甲虫的距离衰减模式的各向异性:(a)测量距离衰减模型的残差与对站点对进行分离的角度之间的相关性;(b)为每个数据集分别计算两个单独的距离衰减模型,一个模型仅使用沿南北方向分离的对,另一个模型仅使用沿东西方向分离的对。我们还通过评估甲虫分类群之间的这些关系,分析了距离衰减的各向异性程度与扩散能力(无翅物种的比例和体型大小)和生态位特征(主要栖息地和营养位)之间的关系(n=21)。各向异性在不同领域和生物群之间差异显著。尽管在所有数据集中文艺复兴时期在南北方向上的梯度比在东西方向上的梯度更陡,但在浮游生物和大多数脊椎动物群落中,南北方向的距离衰减往往比东西方向的距离衰减更陡,而在欧洲两栖动物和大多数甲虫类群中则更平缓。根据它们的扩散能力,甲虫类群之间的各向异性也有很大差异,因为无翅物种的比例解释了南北方向和东西方向距离衰减斜率之间差异的 60%方差。我们的结果表明,从海洋到陆地领域,平衡程度降低,并且在脊椎动物和甲虫之间有显著差异。这对不同群体跟踪其适宜气候的预期能力有深远影响,因此对生物多样性对气候变化的影响有深远影响。