Suppr超能文献

基于条件生成对抗网络和无监督迁移学习的心脏磁共振电影成像超分辨率方法。

Super-Resolution of Cardiac MR Cine Imaging using Conditional GANs and Unsupervised Transfer Learning.

机构信息

Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK.

Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK; Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK.

出版信息

Med Image Anal. 2021 Jul;71:102037. doi: 10.1016/j.media.2021.102037. Epub 2021 Apr 6.

Abstract

High-resolution (HR), isotropic cardiac Magnetic Resonance (MR) cine imaging is challenging since it requires long acquisition and patient breath-hold times. Instead, 2D balanced steady-state free precession (SSFP) sequence is widely used in clinical routine. However, it produces highly-anisotropic image stacks, with large through-plane spacing that can hinder subsequent image analysis. To resolve this, we propose a novel, robust adversarial learning super-resolution (SR) algorithm based on conditional generative adversarial nets (GANs), that incorporates a state-of-the-art optical flow component to generate an auxiliary image to guide image synthesis. The approach is designed for real-world clinical scenarios and requires neither multiple low-resolution (LR) scans with multiple views, nor the corresponding HR scans, and is trained in an end-to-end unsupervised transfer learning fashion. The designed framework effectively incorporates visual properties and relevant structures of input images and can synthesise 3D isotropic, anatomically plausible cardiac MR images, consistent with the acquired slices. Experimental results show that the proposed SR method outperforms several state-of-the-art methods both qualitatively and quantitatively. We show that subsequent image analyses including ventricle segmentation, cardiac quantification, and non-rigid registration can benefit from the super-resolved, isotropic cardiac MR images, to produce more accurate quantitative results, without increasing the acquisition time. The average Dice similarity coefficient (DSC) for the left ventricular (LV) cavity and myocardium are 0.95 and 0.81, respectively, between real and synthesised slice segmentation. For non-rigid registration and motion tracking through the cardiac cycle, the proposed method improves the average DSC from 0.75 to 0.86, compared to the original resolution images.

摘要

高分辨率(HR)、各向同性心脏磁共振(MR)电影成像具有挑战性,因为它需要长时间采集和患者屏气。相反,二维平衡稳态自由进动(SSFP)序列广泛应用于临床常规。然而,它产生高度各向异性的图像堆栈,具有较大的贯穿平面间隔,可能会阻碍后续的图像分析。为了解决这个问题,我们提出了一种新颖的、鲁棒的对抗性学习超分辨率(SR)算法,该算法基于条件生成对抗网络(GANs),并结合了最先进的光流组件来生成辅助图像,以指导图像合成。该方法针对实际的临床情况设计,既不需要多个具有多个视图的低分辨率(LR)扫描,也不需要相应的 HR 扫描,并且以端到端的无监督迁移学习方式进行训练。所设计的框架有效地结合了输入图像的视觉属性和相关结构,并能合成与采集切片一致的 3D 各向同性、解剖合理的心脏 MR 图像。实验结果表明,所提出的 SR 方法在定性和定量方面都优于几种最先进的方法。我们表明,包括心室分割、心脏量化和非刚性配准在内的后续图像分析可以受益于超分辨率、各向同性的心脏 MR 图像,从而产生更准确的定量结果,而不会增加采集时间。左心室(LV)腔和心肌的平均 Dice 相似系数(DSC)分别为 0.95 和 0.81,真实和合成切片分割之间的 DSC 分别为 0.95 和 0.81。对于非刚性配准和通过心脏周期的运动跟踪,与原始分辨率图像相比,该方法将平均 DSC 从 0.75 提高到 0.86。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验