Suppr超能文献

核心脏成像中的人工智能:新进展、新兴技术及近期临床试验

Artificial Intelligence in Nuclear Cardiac Imaging: Novel Advances, Emerging Techniques, and Recent Clinical Trials.

作者信息

Golub Ilana S, Thummala Abhinav, Morad Tyler, Dhaliwal Jasmeet, Elisarraras Francisco, Karlsberg Ronald P, Cho Geoffrey W

机构信息

David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

David Geffen School of Medicine, Department of Cardiology, University of California, Los Angeles, CA 90095, USA.

出版信息

J Clin Med. 2025 Mar 19;14(6):2095. doi: 10.3390/jcm14062095.

Abstract

Cardiovascular disease (CVD) is a leading cause of death, accounting for over 30% of annual global fatalities. Ischemic heart disease, in turn, is a frontrunner of worldwide CVD mortality. With the burden of coronary disease rapidly growing, understanding the nuances of cardiac imaging and risk prognostication becomes paramount. Myocardial perfusion imaging (MPI) is a frequently utilized and well established testing modality due to its significant clinical impact in disease diagnosis and risk assessment. Recently, nuclear cardiology has witnessed major advancements, driven by innovations in novel imaging technologies and improved understanding of cardiovascular pathophysiology. Applications of artificial intelligence (AI) to MPI have enhanced diagnostic accuracy, risk stratification, and therapeutic decision-making in patients with coronary artery disease (CAD). AI techniques such as machine learning (ML) and deep learning (DL) neural networks offer new interpretations of immense data fields, acquired through cardiovascular imaging modalities such as nuclear medicine (NM). Recently, AI algorithms have been employed to enhance image reconstruction, reduce noise, and assist in the interpretation of complex datasets. The rise of AI in nuclear medicine (AI-NM) has proven itself groundbreaking in the efficiency of image acquisition, post-processing time, diagnostic ability, consistency, and even in risk-stratification and outcome prognostication. To that end, this narrative review will explore these latest advances in AI in nuclear medicine and its rapid transformation of the cardiac diagnostics landscape. This paper will examine the evolution of AI-NM, review novel AI techniques and applications in nuclear cardiac imaging, summarize recent AI-NM clinical trials, and explore the technical and clinical challenges in its implementation of artificial intelligence.

摘要

心血管疾病(CVD)是主要的死亡原因,占全球年度死亡人数的30%以上。反过来,缺血性心脏病是全球心血管疾病死亡率的首要原因。随着冠心病负担迅速增加,了解心脏成像的细微差别和风险预测变得至关重要。心肌灌注成像(MPI)由于其在疾病诊断和风险评估中的重大临床影响,是一种经常使用且成熟的检测方法。最近,由于新型成像技术的创新和对心血管病理生理学的更好理解,核心脏病学取得了重大进展。人工智能(AI)在MPI中的应用提高了冠心病(CAD)患者的诊断准确性、风险分层和治疗决策。机器学习(ML)和深度学习(DL)神经网络等人工智能技术为通过核医学(NM)等心血管成像方式获取的海量数据领域提供了新的解释。最近,人工智能算法已被用于增强图像重建、减少噪声并协助解释复杂数据集。核医学中人工智能(AI-NM)的兴起已证明其在图像采集效率、后处理时间、诊断能力、一致性,甚至在风险分层和结果预测方面具有开创性。为此,本叙述性综述将探讨核医学中人工智能的这些最新进展及其对心脏诊断格局的快速转变。本文将研究AI-NM的发展历程,回顾核心脏成像中新颖的AI技术和应用,总结最近的AI-NM临床试验,并探讨其在实施人工智能过程中的技术和临床挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75a8/11943256/7a4e0f654c38/jcm-14-02095-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验