Jiang Cheng, Gedeon Alexander, Lyu Yiwei, Landgraf Eric, Zhang Yufeng, Hou Xinhai, Kondepudi Akhil, Chowdury Asadur, Lee Honglak, Hollon Todd
University of Michigan.
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6966-6977. doi: 10.1109/cvprw63382.2024.00690. Epub 2024 Sep 27.
Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth/z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.
体积生物医学显微镜检查有潜力增加从临床组织标本中提取的诊断信息,并提高人类病理学家和计算病理学模型的诊断准确性。不幸的是,将三维(3D)体积显微镜检查整合到临床医学中的障碍包括成像时间长、深度/Z轴分辨率差以及高质量体积数据量不足。利用丰富的高分辨率二维显微镜数据,我们引入了用于超分辨率的掩码切片扩散(MSDSR),它利用了生物标本所有空间维度上数据生成分布的内在等效性。这种内在特性使得在一个平面(例如XY)的高分辨率图像上训练的超分辨率模型能够有效地推广到其他平面(XZ、YZ),克服了对方向的传统依赖。我们专注于MSDSR在受激拉曼组织学(SRH)中的应用,SRH是一种用于生物标本分析和术中诊断的光学成像模式,其特点是能够快速获取高分辨率二维图像,但光学Z切片缓慢且成本高昂。为了评估MSDSR的效果,我们引入了一种新的性能指标SliceFID,并通过广泛的评估证明了MSDSR相对于基线模型的优越性能。我们的研究结果表明,MSDSR不仅显著提高了三维体积数据的质量和分辨率,还解决了阻碍三维体积显微镜在临床诊断和生物医学研究中更广泛应用的主要障碍。