Suppr超能文献

基于二维监督的生物医学体积超分辨率技术。

Super-resolution of biomedical volumes with 2D supervision.

作者信息

Jiang Cheng, Gedeon Alexander, Lyu Yiwei, Landgraf Eric, Zhang Yufeng, Hou Xinhai, Kondepudi Akhil, Chowdury Asadur, Lee Honglak, Hollon Todd

机构信息

University of Michigan.

出版信息

Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6966-6977. doi: 10.1109/cvprw63382.2024.00690. Epub 2024 Sep 27.

Abstract

Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth/z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.

摘要

体积生物医学显微镜检查有潜力增加从临床组织标本中提取的诊断信息,并提高人类病理学家和计算病理学模型的诊断准确性。不幸的是,将三维(3D)体积显微镜检查整合到临床医学中的障碍包括成像时间长、深度/Z轴分辨率差以及高质量体积数据量不足。利用丰富的高分辨率二维显微镜数据,我们引入了用于超分辨率的掩码切片扩散(MSDSR),它利用了生物标本所有空间维度上数据生成分布的内在等效性。这种内在特性使得在一个平面(例如XY)的高分辨率图像上训练的超分辨率模型能够有效地推广到其他平面(XZ、YZ),克服了对方向的传统依赖。我们专注于MSDSR在受激拉曼组织学(SRH)中的应用,SRH是一种用于生物标本分析和术中诊断的光学成像模式,其特点是能够快速获取高分辨率二维图像,但光学Z切片缓慢且成本高昂。为了评估MSDSR的效果,我们引入了一种新的性能指标SliceFID,并通过广泛的评估证明了MSDSR相对于基线模型的优越性能。我们的研究结果表明,MSDSR不仅显著提高了三维体积数据的质量和分辨率,还解决了阻碍三维体积显微镜在临床诊断和生物医学研究中更广泛应用的主要障碍。

相似文献

1
Super-resolution of biomedical volumes with 2D supervision.
Conf Comput Vis Pattern Recognit Workshops. 2024 Jun;2024:6966-6977. doi: 10.1109/cvprw63382.2024.00690. Epub 2024 Sep 27.
4
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.
6
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
8
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
9
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

本文引用的文献

1
Conditional Diffusion Models for Semantic 3D Brain MRI Synthesis.
IEEE J Biomed Health Inform. 2024 Jul;28(7):4084-4093. doi: 10.1109/JBHI.2024.3385504. Epub 2024 Jul 2.
2
Single image super-resolution with denoising diffusion GANS.
Sci Rep. 2024 Feb 21;14(1):4272. doi: 10.1038/s41598-024-52370-3.
3
A Super-Resolution Diffusion Model for Recovering Bone Microstructure from CT Images.
Radiol Artif Intell. 2023 Sep 20;5(6):e220251. doi: 10.1148/ryai.220251. eCollection 2023 Nov.
4
Hierarchical discriminative learning improves visual representations of biomedical microscopy.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:19798-19808. doi: 10.1109/cvpr52729.2023.01896. Epub 2023 Aug 22.
6
An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
IEEE J Biomed Health Inform. 2023 Feb;27(2):1004-1015. doi: 10.1109/JBHI.2022.3223106.
7
Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging.
Nat Med. 2023 Apr;29(4):828-832. doi: 10.1038/s41591-023-02252-4. Epub 2023 Mar 23.
8
MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion.
IEEE Trans Med Imaging. 2023 Apr;42(4):922-934. doi: 10.1109/TMI.2022.3220681. Epub 2023 Apr 3.
9
Image Super-Resolution via Iterative Refinement.
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4713-4726. doi: 10.1109/TPAMI.2022.3204461. Epub 2023 Mar 7.
10
Score-based diffusion models for accelerated MRI.
Med Image Anal. 2022 Aug;80:102479. doi: 10.1016/j.media.2022.102479. Epub 2022 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验