Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology , The University of Queensland , St. Lucia , Queensland 4072 , Australia.
Environ Sci Technol. 2018 Apr 3;52(7):4006-4012. doi: 10.1021/acs.est.7b05046. Epub 2018 Mar 20.
Anaerobic oxidation of methane (AOM) plays a crucial role in controlling the flux of methane from anoxic environments. Sulfate-, nitrite-, nitrate-, and iron-dependent methane oxidation processes have been considered to be responsible for the AOM activities in anoxic niches. We report that nitrate-reducing AOM microorganisms, enriched in a membrane biofilm bioreactor, are able to couple selenate reduction to AOM. According to ion chromatography, X-ray photoelectron spectroscopy, and long-term bioreactor performance, we reveal that soluble selenate was reduced to nanoparticle elemental selenium. High-throughput 16S rRNA gene sequencing indicates that Candidatus Methanoperedens and Candidatus Methylomirabilis remained the only known methane-oxidizing microorganisms after nitrate was switched to selenate, suggesting that these organisms could couple anaerobic methane oxidation to selenate reduction. Our findings suggest a possible link between the biogeochemical selenium and methane cycles.
甲烷的厌氧氧化(AOM)在控制缺氧环境中甲烷通量方面起着至关重要的作用。硫酸盐、亚硝酸盐、硝酸盐和铁依赖型甲烷氧化过程被认为是缺氧生境中 AOM 活性的原因。我们报告说,在膜生物膜生物反应器中富集的硝酸盐还原型 AOM 微生物能够将硒酸盐还原与 AOM 偶联。根据离子色谱、X 射线光电子能谱和长期生物反应器性能,我们揭示了可溶硒酸盐被还原为纳米颗粒元素硒。高通量 16S rRNA 基因测序表明,在硝酸盐切换为硒酸盐后,只有已知的甲烷氧化微生物 Candidatus Methanoperedens 和 Candidatus Methylomirabilis 仍然存在,这表明这些生物能够将厌氧甲烷氧化与硒酸盐还原偶联。我们的发现表明生物地球化学硒和甲烷循环之间可能存在联系。