Suppr超能文献

甲烷营养型古菌和细菌的混合生物群落促进了依赖甲烷的硒酸盐还原。

A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction.

机构信息

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China.

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.

出版信息

Sci Total Environ. 2020 Aug 25;732:139310. doi: 10.1016/j.scitotenv.2020.139310. Epub 2020 May 11.

Abstract

Though methane-based selenate reduction has been reported, neither the selenate load nor the removal rate could satisfy practical applications, thus limiting this technique to bio-remediate selenate pollution. In the present study, using a membrane biofilm batch reactor (MBBR), we successfully enriched a consortium performing methane-dependent selenate reduction, with enhanced reduction rates from 16.1 to 28.9 μM-day under a comparable Se concentration to industrial wastewaters (i.e., ~500 μM). During active reduction, 16S rRNA gene copies of Archaea and Bacteria were both increased more than one order of magnitude. Clone library construction and high-throughput sequencing indicated that Methanosarcina and Methylocystis were the only methane-oxidizing microorganisms. The presence of 20 mM bromoethanesulphonate or 0.15 mM acetylene both significantly, but not completely, inhibited methane-dependent selenate reduction, indicating the concurrent contributions of methanotrophic archaea and bacteria. Fluorescence in situ hybridization (FISH) revealed that archaea directly adhered to the surface of the membrane while bacteria were in the outer layer, together forming the mature biofilm. This study highlights the crucial role of both methanotrophic archaea and bacteria in methane-dependent selenate reduction, and lays foundations in applying methane to bio-remediate practical selenate pollution.

摘要

虽然已经有报道称甲烷基硒酸盐还原,但硒酸盐的负载量和去除率都不能满足实际应用,因此限制了该技术用于生物修复硒酸盐污染。在本研究中,使用膜生物膜批式反应器(MBBR),我们成功富集了一种能进行甲烷依赖型硒酸盐还原的菌丛,在可比的硒浓度(即~500μM)下,还原速率从 16.1 到 28.9μM-day 提高了一个数量级。在活性还原过程中,古菌和细菌的 16S rRNA 基因拷贝数都增加了一个数量级以上。克隆文库构建和高通量测序表明,Methanosarcina 和 Methylocystis 是唯一的甲烷氧化微生物。20 mM 溴乙磺酸盐或 0.15 mM 乙炔的存在均显著但不完全抑制甲烷依赖型硒酸盐还原,表明甲烷营养型古菌和细菌的共同贡献。荧光原位杂交(FISH)显示,古菌直接附着在膜的表面,而细菌则在外部,共同形成成熟的生物膜。本研究强调了甲烷营养型古菌和细菌在甲烷依赖型硒酸盐还原中的关键作用,为应用甲烷生物修复实际硒酸盐污染奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验