Suppr超能文献

长冠状病毒病(COVID)症状和影响工具的开发和验证:一组源自患者真实体验的患者报告工具。

Development and Validation of the Long Coronavirus Disease (COVID) Symptom and Impact Tools: A Set of Patient-Reported Instruments Constructed From Patients' Lived Experience.

机构信息

Université de Paris, CRESS, INSERM, INRA, Paris, France.

Centre d'Epidémiologie Clinique, Hôpital Hôtel-Dieu, AP-HP, Paris, France.

出版信息

Clin Infect Dis. 2022 Jan 29;74(2):278-287. doi: 10.1093/cid/ciab352.

Abstract

BACKGROUND

To develop and validate patient-reported instruments, based on patients' lived experiences, for monitoring the symptoms and impact of long coronavirus disease (covid).

METHODS

The long covid Symptom and Impact Tools (ST and IT) were constructed from the answers to a survey with open-ended questions to 492 patients with long COVID. Validation of the tools involved adult patients with suspected or confirmed coronavirus disease 2019 (COVID-19) and symptoms extending over 3 weeks after onset. Construct validity was assessed by examining the relations of the ST and IT scores with health-related quality of life (EQ-5D-5L), function (PCFS, post-COVID functional scale), and perceived health (MYMOP2, Measure yourself medical outcome profile 2). Reliability was determined by a test-retest. The "patient acceptable symptomatic state" (PASS) was determined by the percentile method.

RESULTS

Validation involved 1022 participants (55% with confirmed COVID-19, 79% female, and 12.5% hospitalized for COVID-19). The long COVID ST and IT scores were strongly correlated with the EQ-5D-5L (rs = -0.45 and rs = -0.59, respectively), the PCFS (rs = -0.39 and rs = -0.55), and the MYMOP2 (rs = -0.40 and rs = -0.59). Reproducibility was excellent with an interclass correlation coefficient of 0.83 (95% confidence interval .80 to .86) for the ST score and 0.84 (.80 to .87) for the IT score. In total, 793 (77.5%) patients reported an unacceptable symptomatic state, thereby setting the PASS for the long covid IT score at 30 (28 to 33).

CONCLUSIONS

The long covid ST and IT tools, constructed from patients' lived experiences, provide the first validated and reliable instruments for monitoring the symptoms and impact of long covid.

摘要

背景

为了基于患者的生活体验,开发并验证用于监测长新冠症状和影响的患者报告工具。

方法

长新冠症状和影响工具(ST 和 IT)是通过对 492 名长新冠患者的开放式调查回答构建而成。工具的验证涉及疑似或确诊的 2019 年冠状病毒病(COVID-19)患者和症状持续 3 周以上的患者。构念效度通过检查 ST 和 IT 分数与健康相关生活质量(EQ-5D-5L)、功能(PCFS,长新冠后功能量表)和感知健康(MYMOP2,自我医疗成果评估量表 2)之间的关系来评估。可靠性通过测试 - 重测来确定。“患者可接受的症状状态”(PASS)通过百分位法确定。

结果

验证涉及 1022 名参与者(55%为确诊 COVID-19,79%为女性,12.5%因 COVID-19 住院)。长新冠 ST 和 IT 分数与 EQ-5D-5L(rs = -0.45 和 rs = -0.59)、PCFS(rs = -0.39 和 rs = -0.55)和 MYMOP2(rs = -0.40 和 rs = -0.59)高度相关。ST 分数的组内相关系数为 0.83(95%置信区间为 0.80 至 0.86),IT 分数的组内相关系数为 0.84(95%置信区间为 0.80 至 0.87),可重复性非常好。共有 793 名(77.5%)患者报告了不可接受的症状状态,从而将长新冠 IT 分数的 PASS 设置为 30(28 至 33)。

结论

从患者的生活体验中构建的长新冠 ST 和 IT 工具,为监测长新冠的症状和影响提供了第一个经过验证和可靠的工具。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验