Suppr超能文献

[一种用于睡眠阶段分类的混合注意力时间序列网络]

[A hybrid attention temporal sequential network for sleep stage classification].

作者信息

Jin Zheng, Jia Kebin, Yuan Ye

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, P.R.China.

Beijing Laboratory of Advanced Information Networks, Beijing 100124, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):241-248. doi: 10.7507/1001-5515.202008006.

Abstract

Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.

摘要

睡眠阶段分类是诊断睡眠疾病的一种必要的基本方法,近年来受到了广泛关注。传统的睡眠阶段分类方法,如人工标注方法和机器学习算法,存在效率低和泛化性差的局限性。最近,深度神经网络通过学习睡眠数据中复杂模式的能力显示出了更好的结果。然而,这些模型忽略了睡眠数据各段中时间内的序列信息以及所有通道之间的相关性。为了解决这些问题,本文提出了一种混合注意力时间序列网络模型,选择递归神经网络代替传统的卷积神经网络,并从时间角度提取多导睡眠图的时间特征。此外,采用时间内注意力机制和通道注意力机制来实现时间内表示的融合和通道相关表示的融合。然后,基于递归神经网络和时间间注意力机制,该模型进一步实现了时间间上下文表示的融合。最后,根据上述混合表示完成端到端的自动睡眠阶段分类。本文基于从开源网站下载的两个公共基准睡眠数据集对所提出的模型进行了评估,这些数据集包括多个多导睡眠图。实验结果表明,与十个最先进的基线相比,所提出的模型可以取得更好的性能。睡眠阶段分类的总体准确率分别可以达到0.801、0.801和0.717。同时,所提出模型的宏平均F1分数可以达到0.752、0.728和0.700。所有实验结果都可以证明所提出模型的有效性。

相似文献

1
[A hybrid attention temporal sequential network for sleep stage classification].[一种用于睡眠阶段分类的混合注意力时间序列网络]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):241-248. doi: 10.7507/1001-5515.202008006.

本文引用的文献

2
Sleep staging algorithm based on multichannel data adding and multifeature screening.基于多通道数据添加和多特征筛选的睡眠分期算法。
Comput Methods Programs Biomed. 2020 Apr;187:105253. doi: 10.1016/j.cmpb.2019.105253. Epub 2019 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验