Suppr超能文献

利用连续多个时间点的时频谱进行睡眠阶段分类

Sleep Stage Classification Using Time-Frequency Spectra From Consecutive Multi-Time Points.

作者信息

Xu Ziliang, Yang Xuejuan, Sun Jinbo, Liu Peng, Qin Wei

机构信息

Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.

出版信息

Front Neurosci. 2020 Jan 28;14:14. doi: 10.3389/fnins.2020.00014. eCollection 2020.

Abstract

Sleep stage classification is an open challenge in the field of sleep research. Considering the relatively small size of datasets used by previous studies, in this paper we used the Sleep Heart Health Study dataset from the National Sleep Research Resource database. A long short-term memory (LSTM) network using a time-frequency spectra of several consecutive 30 s time points as an input was used to perform the sleep stage classification. Four classical convolutional neural networks (CNNs) using a time-frequency spectra of a single 30 s time point as an input were used for comparison. Results showed that, when considering the temporal information within the time-frequency spectrum of a single 30 s time point, the LSTM network had a better classification performance than the CNNs. Moreover, when additional temporal information was taken into consideration, the classification performance of the LSTM network gradually increased. It reached its peak when temporal information from three consecutive 30 s time points was considered, with a classification accuracy of 87.4% and a Cohen's Kappa coefficient of 0.8216. Compared with CNNs, our results indicate that for sleep stage classification, the temporal information within the data or the features extracted from the data should be considered. LSTM networks take this temporal information into account, and thus, may be more suitable for sleep stage classification.

摘要

睡眠阶段分类是睡眠研究领域的一个开放性挑战。考虑到先前研究使用的数据集规模相对较小,在本文中我们使用了来自国家睡眠研究资源数据库的睡眠心脏健康研究数据集。我们使用一个以几个连续30秒时间点的时频谱作为输入的长短期记忆(LSTM)网络来进行睡眠阶段分类。另外,使用四个以单个30秒时间点的时频谱作为输入的经典卷积神经网络(CNN)进行比较。结果表明,当考虑单个30秒时间点的时频谱内的时间信息时,LSTM网络的分类性能优于CNN。此外,当考虑额外的时间信息时,LSTM网络的分类性能逐渐提高。当考虑来自三个连续30秒时间点的时间信息时,其达到峰值,分类准确率为87.4%,科恩卡帕系数为0.8216。与CNN相比,我们的结果表明,对于睡眠阶段分类,应考虑数据内的时间信息或从数据中提取的特征。LSTM网络考虑了这种时间信息,因此可能更适合睡眠阶段分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8ef/6997491/9b4145313fc0/fnins-14-00014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验