Suppr超能文献

微器件几何形状对肠道转运和滞留的影响。

Impact of Microdevice Geometry on Transit and Retention in the Murine Gastrointestinal Tract.

机构信息

University of California Berkeley-University of California San Franciso Graduate Program in Bioengineering, San Francisco, California 94118, United States.

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94143, United States.

出版信息

ACS Biomater Sci Eng. 2023 Jun 12;9(6):2891-2901. doi: 10.1021/acsbiomaterials.0c01606. Epub 2021 Apr 29.

Abstract

Oral protein delivery technologies often depend on encapsulating or enclosing the protein cargo to protect it against pH-driven degradation in the stomach or enzymatic digestion in the small intestine. An emergent methodology is to encapsulate therapeutics in microscale, asymmetric, planar microparticles, referred to as microdevices. Previous work has shown that, compared to spherical particles, planar microdevices have longer residence times in the GI tract, but it remains unclear how specific design choices (e.g., material selection, particle diameter) impact microdevice behavior in vivo. Recent advances in microdevice fabrication through picoliter printing have expanded the range of device sizes that can be fabricated in a rapid manner. However, relatively little work has explored how device size governs their behavior in the intestinal environment. In this study, we probe the impact of geometry of planar microdevices on their transit and accumulation in the murine GI tract. Additionally, we present a strategy to label, image, and quantify these distributions in intact tissue in a continuous manner, enabling a more detailed understanding of device distribution and transit kinetics than previously possible. We show that smaller particles (194.6 ± 7 μm.diameter) tend to empty from the stomach faster than midsize (293.2 ± 7 μm.diameter) and larger devices (440.9 ± 9 μm.diameter) and that larger devices distribute more broadly in the GI tract and exit slower than other geometries. In general, we observed an inverse correlation between device diameter and GI transit rate. These results inform the future design of drug delivery systems, using particle geometry as an engineering design parameter to control device accumulation and distribution in the GI tract. Additionally, our image analysis process provides greater insight into the tissue level distribution and transit of particle populations. Using this technique, we demonstrate that microdevices act and translocate independently, as opposed to transiting in one homogeneous mass, meaning that target sites will likely be exposed to devices multiple times over the course of hours post administration. This imaging technique and associated findings enable data-informed design of future particle delivery systems, allowing orthogonal control of transit and distribution kinetics in vivo independent of material and cargo selection.

摘要

口服蛋白质递药技术通常依赖于将蛋白质包裹或封装起来,以保护其免受胃部 pH 值驱动的降解或小肠内酶解的影响。一种新兴的方法是将治疗药物封装在微尺度、非对称的平面微颗粒中,称为微器件。以前的工作表明,与球形颗粒相比,平面微器件在胃肠道中的停留时间更长,但仍不清楚特定的设计选择(例如,材料选择、颗粒直径)如何影响体内微器件的行为。通过皮升级打印实现的微器件制造的最新进展扩展了可以快速制造的器件尺寸范围。然而,相对较少的工作探索了器件尺寸如何控制它们在肠道环境中的行为。在这项研究中,我们研究了平面微器件的几何形状对其在小鼠胃肠道中的转运和积累的影响。此外,我们提出了一种策略,以连续的方式标记、成像和量化这些分布在完整组织中的分布,从而比以前更详细地了解器件的分布和传输动力学。我们发现较小的颗粒(194.6±7μm 直径)比中尺寸(293.2±7μm 直径)和较大的器件(440.9±9μm 直径)更快地从胃排空,并且较大的器件在胃肠道中分布更广泛,排空速度更慢。一般来说,我们观察到器件直径与胃肠道转运率之间存在反比关系。这些结果为未来的药物输送系统设计提供了信息,将颗粒几何形状作为工程设计参数来控制胃肠道中器件的积累和分布。此外,我们的图像分析过程提供了对颗粒群体在组织水平上的分布和转运的更深入了解。使用这种技术,我们证明微器件独立作用和迁移,而不是作为一个均匀的整体迁移,这意味着在给药后数小时内,目标部位可能会多次暴露于微器件。这种成像技术和相关发现使我们能够对未来的颗粒输送系统进行数据驱动的设计,从而能够独立控制体内的转运和分布动力学,而无需考虑材料和货物的选择。

相似文献

1
Impact of Microdevice Geometry on Transit and Retention in the Murine Gastrointestinal Tract.微器件几何形状对肠道转运和滞留的影响。
ACS Biomater Sci Eng. 2023 Jun 12;9(6):2891-2901. doi: 10.1021/acsbiomaterials.0c01606. Epub 2021 Apr 29.
6
Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery.密封纳米吸管微器件的制作用于口服给药。
ACS Nano. 2016 Jun 28;10(6):5873-81. doi: 10.1021/acsnano.6b00809. Epub 2016 Jun 13.
10
X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices.用于微型口服给药装置胃肠道追踪的X射线成像
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2538-2547. doi: 10.1021/acsbiomaterials.1c00225. Epub 2021 Apr 15.

本文引用的文献

2
Micro and nanoscale technologies in oral drug delivery.口腔给药的微纳技术。
Adv Drug Deliv Rev. 2020;157:37-62. doi: 10.1016/j.addr.2020.07.012. Epub 2020 Jul 22.
8
Microfabricated devices for oral drug delivery.微纳加工的口服给药装置。
Lab Chip. 2018 Aug 7;18(16):2348-2358. doi: 10.1039/c8lc00408k.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验