Suppr超能文献

预测高危孕妇子痫前期、产后出血及产后感染孕产妇发病率的产科早期预警系统:一项前瞻性队列研究

Obstetric early warning system to predict maternal morbidity of pre-eclampsia, postpartum hemorrhage and infection after birth in high-risk women: a prospective cohort study.

作者信息

Hannola Katja, Hoppu Sanna, Mennander Susanna, Huhtala Heini, Laivuori Hannele, Tihtonen Kati

机构信息

Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere Finland.

Department of Emergency, Anesthesia and Pain Medicine, Tampere University Hospital, Tampere, Finland.

出版信息

Midwifery. 2021 Aug;99:103015. doi: 10.1016/j.midw.2021.103015. Epub 2021 Apr 15.

Abstract

OBJECTIVE

The purpose of early warning systems is to detect deterioration of the patient and to enable timely intervention to prevent possible severe illness. The most common causes of maternal morbidity and mortality after birth are worsening pre-eclampsia, postpartum haemorrhage and puerperal infection. Our aim was to validate the accuracy of the obstetric early warning system and different physiological triggers to predict morbidity on the postnatal ward in high-risk women.

DESIGN

A prospective cohort study.

SETTING

A tertiary referral hospital in Finland.

PARTICIPANTS

High-risk women (n=828) (body mass index > 35 kg/m, postpartum haemorrhage > 1,500 g, pre-eclampsia, chorioamnionitis during birth, type 1 diabetes or anxiety over the maternal condition based on clinical judgement) were studied on the postnatal ward in the first 24 hours after giving birth. In this study population the women without any morbidity served as a control group. The study was conducted between 1.11.2016 - 30.4. 2018 covering a period of 18 months.

MEASUREMENTS AND FINDINGS

The accuracy of the obstetric early warning system and its five physiological parameters-respiratory rate, oxygen saturation, blood pressure, heart rate and body temperature-and a pain score to predict worsening pre-eclampsia, complications related to postpartum haemorrhage and puerperal infection were determined. A red trigger is as a single, markedly abnormal observation, and a yellow trigger is a combination of two mildly abnormal observations. The sensitivity of obstetric early warning system at its best was 72% for pre-eclampsia, 52% for infection and 25% for postpartum haemorrhage. The red triggers were significantly associated with morbidity in each outcome studied. The red triggers of systolic blood pressure (OR 25.7, 95% CI 13.2-50.1) and diastolic blood pressure (OR 22.1, 95% CI 11.3-43.0) were independently associated with pre-eclampsia, systolic blood pressure (OR 2.7, 95% CI 1.4-5.6) and heart rate (OR 3.6, 95% CI 1.7-7.6) with postpartum haemorrhage and heart rate (OR 3.3, 1.0-10.3) with infection.

KEYCONCLUSIONS

The sensitivity of obstetric early warning system varied depending on the type of morbidity. The highest sensitivity and positive predictive value were in pre-eclampsia. Systolic and diastolic blood pressure and heart rate were the strongest physiological parameters to predict morbidity.

IMPLICATIONS FOR PRACTICE

The systematic use of obstetric early warning system helps to improve maternal safety after birth in high-risk women. Blood pressure and pulse are the most important measurements.

摘要

目的

早期预警系统的目的是检测患者病情恶化情况,并及时进行干预以预防可能出现的严重疾病。产后孕产妇发病和死亡的最常见原因是子痫前期病情加重、产后出血和产褥感染。我们的目的是验证产科早期预警系统以及不同生理触发因素预测高危女性产后病房发病情况的准确性。

设计

前瞻性队列研究。

地点

芬兰的一家三级转诊医院。

参与者

高危女性(n = 828)(体重指数> 35 kg/m²、产后出血> 1500 g、子痫前期、分娩期间绒毛膜羊膜炎、1型糖尿病或基于临床判断对产妇状况感到焦虑)在产后的头24小时内在产后病房接受研究。在这个研究人群中,没有任何发病情况的女性作为对照组。该研究于2016年11月1日至2018年4月30日进行,为期18个月。

测量与结果

确定了产科早期预警系统及其五个生理参数——呼吸频率、血氧饱和度、血压、心率和体温——以及一个疼痛评分预测子痫前期病情加重、产后出血相关并发症和产褥感染的准确性。红色触发是指单一的明显异常观察结果,黄色触发是指两个轻度异常观察结果的组合。产科早期预警系统在预测子痫前期时的最佳敏感性为72%,感染为52%,产后出血为25%。红色触发与所研究的每种结局的发病情况均显著相关。收缩压(比值比25.7,95%置信区间13.2 - 50.1)和舒张压(比值比22.1,95%置信区间11.3 - 43.0)的红色触发与子痫前期独立相关,收缩压(比值比2.7,95%置信区间1.4 - 5.6)和心率(比值比3.6,95%置信区间1.7 - 7.6)与产后出血相关,心率(比值比3.3,1.0 - 10.3)与感染相关。

主要结论

产科早期预警系统的敏感性因发病类型而异。子痫前期的敏感性和阳性预测值最高。收缩压、舒张压和心率是预测发病情况最强的生理参数。

对实践的启示

系统使用产科早期预警系统有助于提高高危女性产后的孕产妇安全性。血压和脉搏是最重要的测量指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验