Han Tongzhuo, Wang Jinxi, Peng Chang, Wu Xiaobo, Geng Xiangyi, Zhang Lei, Jiang Mingshun, Zhang Faye
School of Control Science and Engineering, Shandong University, Jinan 250061, PR China.
CRRC QINGDAO SIFANG Co., Ltd., Qingdao 266111, PR China.
ISA Trans. 2024 Feb;145:362-372. doi: 10.1016/j.isatra.2023.11.029. Epub 2023 Nov 18.
Mechanical fault transfer diagnosis has been confirmed as a feasible approach for tackling intelligent diagnosis with incomplete fault information and scarce labeled data on the basis of big data through the transfer of diagnostic knowledge from one or more conditions to any other condition. However, existing research has developed a hypothesis, i.e., the target domain shares an identical label space with the source domain, making it unfeasible to address the practical issue that the target domain label space is a subset of the source domain label space, resulting in low transfer diagnosis accuracy. To address this issue, a novel unsupervised intelligent diagnosis approach named double classifiers-dependent transfer diagnosis network is developed. In this approach, the label distribution weights are generated through the probability output of the classifier of source domain label space to target domain samples, by which small weights are assigned to irrelevant source samples to avoid negative transfer in the global-local maximum mean discrepancies (GL-MMD). In addition, classifiers of the source domain label space and the shared label space are built separately to improve the reliability of label distribution weights and GL-MMD. By training the network in the shared label space, diagnostic knowledge in partial domain issues is effectively transferred. Two cases are implemented to verify the effectiveness of the developed approach. Compared with other transfer diagnosis approaches, the developed approach achieved better diagnostic performance.
机械故障迁移诊断已被确认为一种可行的方法,可通过将诊断知识从一个或多个条件迁移到任何其他条件,在大数据的基础上处理具有不完整故障信息和稀缺标注数据的智能诊断问题。然而,现有研究提出了一个假设,即目标域与源域共享相同的标签空间,这使得解决目标域标签空间是源域标签空间的子集这一实际问题变得不可行,从而导致迁移诊断准确率较低。为了解决这个问题,开发了一种名为双分类器依赖迁移诊断网络的新型无监督智能诊断方法。在这种方法中,标签分布权重通过源域标签空间的分类器对目标域样本的概率输出生成,通过这种方式,将小权重分配给不相关的源样本,以避免在全局-局部最大均值差异(GL-MMD)中出现负迁移。此外,分别构建源域标签空间和共享标签空间的分类器,以提高标签分布权重和GL-MMD的可靠性。通过在共享标签空间中训练网络,有效迁移了部分域问题中的诊断知识。通过两个案例验证了所开发方法的有效性。与其他迁移诊断方法相比,所开发的方法取得了更好的诊断性能。