Suppr超能文献

基于小波变换和堆叠稀疏自编码器的电子宫信号早产检测。

Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder.

机构信息

School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing, China.

School of Chongqing Key Laboratory of Urban Rail Transit Vehicle System Integration and Control, Chongqing Jiaotong University, Chongqing, China.

出版信息

PLoS One. 2019 Apr 16;14(4):e0214712. doi: 10.1371/journal.pone.0214712. eCollection 2019.

Abstract

Based on electrohysterogram, this paper designed a new method using wavelet-based nonlinear features and stacked sparse autoencoder for preterm birth detection. For each sample, three level wavelet decomposition of a time series was performed. Approximation coefficients at level 3 and detail coefficients at levels 1, 2 and 3 were extracted. Sample entropy of the detail coefficients at levels 1, 2, 3 and approximation coefficients at level 3 were computed as features. The classifier was constructed based on stacked sparse autoencoder. In addition, stacked sparse autoencoder was further compared with extreme learning machine and support vector machine in relation to their classification performance of electrohysterogram. The experiment results reveal that classifier based on stacked sparse autoencoder showed better performance than the other two classifiers with an accuracy of 90%, a sensitivity of 92%, a specificity of 88%. The results indicate that the method proposed in this paper could be effective for detecting preterm birth in electrohysterogram and the framework designed in this work presents higher discriminability than other techniques.

摘要

基于电子宫图,本文设计了一种新的方法,使用基于小波的非线性特征和堆叠稀疏自编码器进行早产检测。对于每个样本,对时间序列进行三级小波分解。提取第 3 级的逼近系数和第 1、2 和 3 级的细节系数。计算第 1、2、3 级细节系数和第 3 级逼近系数的样本熵作为特征。基于堆叠稀疏自编码器构建分类器。此外,在电子宫图的分类性能方面,还将堆叠稀疏自编码器与极限学习机和支持向量机进行了进一步比较。实验结果表明,基于堆叠稀疏自编码器的分类器的性能优于另外两个分类器,准确率为 90%,灵敏度为 92%,特异性为 88%。结果表明,本文提出的方法可以有效地检测电子宫图中的早产,并且本文设计的框架比其他技术具有更高的可辨别性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6875/6467380/a4d1d5f3ef02/pone.0214712.g001.jpg

相似文献

引用本文的文献

5

本文引用的文献

2
Optimization-based image reconstruction with artifact reduction in C-arm CBCT.基于优化的C型臂CBCT图像重建及伪影减少
Phys Med Biol. 2016 Oct 21;61(20):7300-7333. doi: 10.1088/0031-9155/61/20/7300. Epub 2016 Oct 3.
4
The Icelandic 16-electrode electrohysterogram database.冰岛 16 电极电子宫描记图数据库。
Sci Data. 2015 Apr 28;2:150017. doi: 10.1038/sdata.2015.17. eCollection 2015.
8
Classification of multichannel uterine EMG signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2602-5. doi: 10.1109/IEMBS.2011.6090718.
9
Continuous time wavelet entropy of auditory evoked potentials.听觉诱发电位的连续时间小波熵。
Comput Biol Med. 2010 Jan;40(1):90-6. doi: 10.1016/j.compbiomed.2009.11.005. Epub 2009 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验