MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol, Ctra. de Canyet s/n, Badalona, 08916 Barcelona, Spain.
Viruses. 2021 Apr 2;13(4):608. doi: 10.3390/v13040608.
The ongoing threat of human immunodeficiency virus (HIV-1) requires continued, detailed investigations of its replication cycle, especially when combined with the most physiologically relevant, fully infectious model systems. Here, we demonstrate the application of the combination of stimulated emission depletion (STED) super-resolution microscopy with beam-scanning fluorescence correlation spectroscopy (sSTED-FCS) as a powerful tool for the interrogation of the molecular dynamics of HIV-1 virus assembly on the cell plasma membrane in the context of a fully infectious virus. In this process, HIV-1 envelope glycoprotein (Env) becomes incorporated into the assembling virus by interacting with the nascent Gag structural protein lattice. Molecular dynamics measurements at these distinct cell surface sites require a guiding strategy, for which we have used a two-colour implementation of sSTED-FCS to simultaneously target individual HIV-1 assembly sites via the aggregated Gag signal. We then compare the molecular mobility of Env proteins at the inside and outside of the virus assembly area. Env mobility was shown to be highly reduced at the assembly sites, highlighting the distinct trapping of Env as well as the usefulness of our methodological approach to study the molecular mobility of specifically targeted sites at the plasma membrane, even under high-biosafety conditions.
持续存在的人类免疫缺陷病毒 (HIV-1) 的威胁要求我们持续、详细地研究其复制周期,尤其是当与最具生理相关性、完全感染性的模型系统相结合时。在这里,我们展示了受激发射损耗 (STED) 超分辨率显微镜与光束扫描荧光相关光谱 (sSTED-FCS) 的组合应用,这是一种强大的工具,可用于研究在完全感染性病毒的情况下,HIV-1 病毒在细胞膜上组装的分子动力学。在这个过程中,HIV-1 包膜糖蛋白 (Env) 通过与新生 Gag 结构蛋白晶格相互作用而被纳入正在组装的病毒中。这些不同的细胞表面位置的分子动力学测量需要一个指导策略,我们使用 sSTED-FCS 的双色实现,通过聚集的 Gag 信号同时针对单个 HIV-1 组装位点。然后,我们比较了病毒组装区域内外的 Env 蛋白的分子流动性。结果表明,在组装部位 Env 的流动性大大降低,突出了 Env 的独特捕获以及我们的方法学方法在高生物安全条件下研究特定靶向膜上分子流动性的有用性。