Suppr超能文献

基于 EEG/HRV 指标的特征提取和特征选择算法构建情绪估计模型。

Constructing an Emotion Estimation Model Based on EEG/HRV Indexes Using Feature Extraction and Feature Selection Algorithms.

机构信息

Shibaura Institute of Technology, Tokyo 135-8548, Japan.

出版信息

Sensors (Basel). 2021 Apr 21;21(9):2910. doi: 10.3390/s21092910.

Abstract

In human emotion estimation using an electroencephalogram (EEG) and heart rate variability (HRV), there are two main issues as far as we know. The first is that measurement devices for physiological signals are expensive and not easy to wear. The second is that unnecessary physiological indexes have not been removed, which is likely to decrease the accuracy of machine learning models. In this study, we used single-channel EEG sensor and photoplethysmography (PPG) sensor, which are inexpensive and easy to wear. We collected data from 25 participants (18 males and 7 females) and used a deep learning algorithm to construct an emotion classification model based on Arousal-Valence space using several feature combinations obtained from physiological indexes selected based on our criteria including our proposed feature selection methods. We then performed accuracy verification, applying a stratified 10-fold cross-validation method to the constructed models. The results showed that model accuracies are as high as 90% to 99% by applying the features selection methods we proposed, which suggests that a small number of physiological indexes, even from inexpensive sensors, can be used to construct an accurate emotion classification model if an appropriate feature selection method is applied. Our research results contribute to the improvement of an emotion classification model with a higher accuracy, less cost, and that is less time consuming, which has the potential to be further applied to various areas of applications.

摘要

在使用脑电图 (EEG) 和心率变异性 (HRV) 进行人类情绪估计方面,据我们所知,有两个主要问题。第一个问题是生理信号的测量设备昂贵且不易佩戴。第二个问题是没有去除不必要的生理指标,这可能会降低机器学习模型的准确性。在这项研究中,我们使用了单通道 EEG 传感器和光电容积脉搏波 (PPG) 传感器,这些传感器价格低廉且易于佩戴。我们从 25 名参与者(18 名男性和 7 名女性)中收集了数据,并使用深度学习算法,根据我们的标准(包括我们提出的特征选择方法)从生理指标中选择了几个特征组合,基于唤醒-效价空间构建了一个情绪分类模型。然后,我们通过应用分层 10 折交叉验证方法对构建的模型进行准确性验证。结果表明,通过应用我们提出的特征选择方法,模型的准确率高达 90%到 99%,这表明,如果应用适当的特征选择方法,即使使用廉价传感器,也可以使用少量的生理指标来构建准确的情绪分类模型。我们的研究结果有助于提高情绪分类模型的准确性、降低成本和时间消耗,这有可能进一步应用于各个领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aa3/8122245/a67ed72a8cf3/sensors-21-02910-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验