Suppr超能文献

基于多通道频带特征注意力融合的 EEG 情绪分类网络。

EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features.

机构信息

National Engineering Research Center of Educational Big Data, Central China Normal University, Wuhan 430079, China.

出版信息

Sensors (Basel). 2022 Jul 13;22(14):5252. doi: 10.3390/s22145252.

Abstract

Understanding learners' emotions can help optimize instruction sand further conduct effective learning interventions. Most existing studies on student emotion recognition are based on multiple manifestations of external behavior, which do not fully use physiological signals. In this context, on the one hand, a learning emotion EEG dataset (LE-EEG) is constructed, which captures physiological signals reflecting the emotions of boredom, neutrality, and engagement during learning; on the other hand, an EEG emotion classification network based on attention fusion (ECN-AF) is proposed. To be specific, on the basis of key frequency bands and channels selection, multi-channel band features are first extracted (using a multi-channel backbone network) and then fused (using attention units). In order to verify the performance, the proposed model is tested on an open-access dataset SEED ( = 15) and the self-collected dataset LE-EEG ( = 45), respectively. The experimental results using five-fold cross validation show the following: (i) on the SEED dataset, the highest accuracy of 96.45% is achieved by the proposed model, demonstrating a slight increase of 1.37% compared to the baseline models; and (ii) on the LE-EEG dataset, the highest accuracy of 95.87% is achieved, demonstrating a 21.49% increase compared to the baseline models.

摘要

理解学习者的情绪可以帮助优化教学,并进一步进行有效的学习干预。大多数现有的学生情绪识别研究都是基于外部行为的多种表现,没有充分利用生理信号。在这种情况下,一方面构建了学习情绪 EEG 数据集(LE-EEG),该数据集捕捉到了反映学习时无聊、中性和投入情绪的生理信号;另一方面,提出了一种基于注意力融合的 EEG 情绪分类网络(ECN-AF)。具体来说,在关键频带和通道选择的基础上,首先提取多通道波段特征(使用多通道骨干网络),然后进行融合(使用注意力单元)。为了验证性能,将所提出的模型分别在公开访问数据集 SEED(n = 15)和自收集数据集 LE-EEG(n = 45)上进行测试。使用五折交叉验证的实验结果表明:(i)在 SEED 数据集上,所提出的模型取得了 96.45%的最高准确率,与基线模型相比略有提高 1.37%;(ii)在 LE-EEG 数据集上,取得了 95.87%的最高准确率,与基线模型相比提高了 21.49%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28f5/9318779/909d7f8b6ec3/sensors-22-05252-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验