Suppr超能文献

基于深度学习的印刷电路板组件字符识别

Character Recognition of Components Mounted on Printed Circuit Board Using Deep Learning.

机构信息

Department of Computer Engineering, Keimyung University, Daegu 42601, Korea.

Faculty of Basic Sciences, Keimyung University, Daegu 42601, Korea.

出版信息

Sensors (Basel). 2021 Apr 21;21(9):2921. doi: 10.3390/s21092921.

Abstract

As the size of components mounted on printed circuit boards (PCBs) decreases, defect detection becomes more important. The first step in an inspection involves recognizing and inspecting characters printed on parts attached to the PCB. In addition, since industrial fields that produce PCBs can change very rapidly, the style of the collected data may vary between collection sites and collection periods. Therefore, flexible learning data that can respond to all fields and time periods are needed. In this paper, large amounts of character data on PCB components were obtained and analyzed in depth. In addition, we proposed a method of recognizing characters by constructing a dataset that was robust with various fonts and environmental changes using a large amount of data. Moreover, a coreset capable of evaluating an effective deep learning model and a base set using n-pick sampling capable of responding to a continuously increasing dataset were proposed. Existing original data and the EfficientNet B0 model showed an accuracy of 97.741%. However, the accuracy of our proposed model was increased to 98.274% for the coreset of 8000 images per class. In particular, the accuracy was 98.921% for the base set with only 1900 images per class.

摘要

随着印刷电路板 (PCB) 上安装的组件尺寸的减小,缺陷检测变得越来越重要。检查的第一步涉及识别和检查附加在 PCB 上的部件上打印的字符。此外,由于生产 PCB 的工业领域可能变化非常快,因此在不同的采集点和采集期间,采集数据的样式可能会有所不同。因此,需要能够应对所有领域和时间段的灵活学习数据。在本文中,我们深入获取和分析了大量 PCB 组件的字符数据。此外,我们提出了一种通过构建数据集来识别字符的方法,该数据集使用大量数据具有对各种字体和环境变化的鲁棒性。此外,还提出了一种能够评估有效深度学习模型的核芯集和使用 n-pick 采样能够响应不断增加的数据集的基集。现有的原始数据和 EfficientNet B0 模型的准确率为 97.741%。然而,对于每个类 8000 张图像的核芯集,我们提出的模型的准确率提高到了 98.274%。特别是,对于每个类只有 1900 张图像的基集,准确率为 98.921%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2dd/8122424/44a4f303fbb7/sensors-21-02921-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验