Suppr超能文献

基于数据扩展策略的 PCB 质量检测半监督缺陷检测方法。

Semi-Supervised Defect Detection Method with Data-Expanding Strategy for PCB Quality Inspection.

机构信息

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Sensors (Basel). 2022 Oct 19;22(20):7971. doi: 10.3390/s22207971.

Abstract

Printed circuit board (PCB) defect detection plays a crucial role in PCB production, and the popular methods are based on deep learning and require large-scale datasets with high-level ground-truth labels, in which it is time-consuming and costly to label these datasets. Semi-supervised learning (SSL) methods, which reduce the need for labeled samples by leveraging unlabeled samples, can address this problem well. However, for PCB defects, the detection accuracy on small numbers of labeled samples still needs to be improved because the number of labeled samples is small, and the training process will be disturbed by the unlabeled samples. To overcome this problem, this paper proposed a semi-supervised defect detection method with a data-expanding strategy (DE-SSD). The proposed DE-SSD uses both the labeled and unlabeled samples, which can reduce the cost of data labeling, and a batch-adding strategy (BA-SSL) is introduced to leverage the unlabeled data with less disturbance. Moreover, a data-expanding (DE) strategy is proposed to use the labeled samples from other datasets to expand the target dataset, which can also prevent the disturbance by the unlabeled samples. Based on the improvements, the proposed DE-SSD can achieve competitive results for PCB defects with fewer labeled samples. The experimental results on DeepPCB indicate that the proposed DE-SSD achieves state-of-the-art performance, which is improved by 4.7 mAP at least compared with the previous methods.

摘要

印刷电路板 (PCB) 缺陷检测在 PCB 生产中起着至关重要的作用,流行的方法基于深度学习,需要具有高级地面真实标签的大规模数据集,在这些数据集中标记这些数据集既耗时又昂贵。半监督学习 (SSL) 方法通过利用未标记的样本来减少对标记样本的需求,可以很好地解决这个问题。然而,对于 PCB 缺陷,由于标记样本数量较少,因此对少量标记样本的检测精度仍需要提高,并且训练过程会受到未标记样本的干扰。为了解决这个问题,本文提出了一种具有数据扩展策略 (DE-SSD) 的半监督缺陷检测方法。所提出的 DE-SSD 使用标记和未标记的样本,可以降低数据标记的成本,并引入了批量添加策略 (BA-SSL),以利用较少干扰的未标记数据。此外,提出了一种数据扩展 (DE) 策略,使用来自其他数据集的标记样本来扩展目标数据集,这也可以防止未标记样本的干扰。基于这些改进,所提出的 DE-SSD 可以在标记样本较少的情况下实现 PCB 缺陷的竞争结果。在 DeepPCB 上的实验结果表明,所提出的 DE-SSD 实现了最先进的性能,与以前的方法相比,至少提高了 4.7 mAP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2747/9611715/4ff10be59579/sensors-22-07971-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验